## Maria Claudia Gonzalez Deniselle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1974385/publications.pdf

Version: 2024-02-01



MARIA CLAUDIA GONZALEZ

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Progesterone Neuroprotection in the Wobbler Mouse, a Genetic Model of Spinal Cord Motor Neuron<br>Disease. Neurobiology of Disease, 2002, 11, 457-468.                                                                 | 4.4 | 112       |
| 2  | Cellular Basis for Progesterone Neuroprotection in the Injured Spinal Cord. Journal of Neurotrauma, 2002, 19, 343-355.                                                                                                 | 3.4 | 92        |
| 3  | Basis of progesterone protection in spinal cord neurodegeneration. Journal of Steroid Biochemistry<br>and Molecular Biology, 2002, 83, 199-209.                                                                        | 2.5 | 77        |
| 4  | Progesterone modulates brain-derived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motoneurons. Experimental Neurology, 2007, 203, 406-414.                                                | 4.1 | 67        |
| 5  | Progesterone restores retrograde labeling of cervical motoneurons in Wobbler mouse motoneuron disease. Experimental Neurology, 2005, 195, 518-523.                                                                     | 4.1 | 40        |
| 6  | Stage Dependent Effects of Progesterone on Motoneurons and Glial Cells of Wobbler Mouse Spinal<br>Cord Degeneration. Cellular and Molecular Neurobiology, 2010, 30, 123-135.                                           | 3.3 | 35        |
| 7  | Progesterone prevents mitochondrial dysfunction in the spinal cord of wobbler mice. Journal of Neurochemistry, 2012, 122, 185-195.                                                                                     | 3.9 | 32        |
| 8  | Cellular basis of steroid neuroprotection in the wobbler mouse, a genetic model of motoneuron disease. Cellular and Molecular Neurobiology, 2001, 21, 237-254.                                                         | 3.3 | 30        |
| 9  | The selective glucocorticoid receptor modulator CORT108297 restores faulty hippocampal parameters in Wobbler and corticosterone-treated mice. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 40-48. | 2.5 | 30        |
| 10 | Progesterone treatment reduces NADPH-diaphorase/nitric oxide synthase in Wobbler mouse motoneuron disease. Brain Research, 2004, 1014, 71-79.                                                                          | 2.2 | 29        |
| 11 | Efficacy of the selective progesterone receptor agonist Nestorone for chronic experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 276, 89-97.                                                 | 2.3 | 28        |
| 12 | Protective effects of the neurosteroid allopregnanolone in a mouse model of spontaneous<br>motoneuron degeneration. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 201-216.                         | 2.5 | 27        |
| 13 | Glucocorticoid receptors and actions in the spinal cord of the Wobbler mouse, a model for<br>neurodegenerative diseases. Journal of Steroid Biochemistry and Molecular Biology, 1997, 60, 205-213.                     | 2.5 | 25        |
| 14 | Steroid Profiling in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Endocrinology,<br>2016, 157, 4446-4460.                                                                                             | 2.8 | 23        |
| 15 | The 21-aminosteroid U-74389F increases the number of glial fibrillary acidic protein-expressing astrocytes in the spinal cord of control and wobbler mice. Cellular and Molecular Neurobiology, 1996, 16, 61-72.       | 3.3 | 19        |
| 16 | The 21-aminosteroid U-74389F attenuates hyperexpression of GAP-43 and NADPH-diaphorase in the spinal cord of wobbler mouse, a model for amyotrophic lateral sclerosis. Neurochemical Research, 1999, 24, 1-8.          | 3.3 | 19        |
| 17 | The Selective Glucocorticoid Receptor Modulator Cort 113176 Reduces Neurodegeneration and Neuroinflammation in Wobbler Mice Spinal Cord. Neuroscience, 2018, 384, 384-396.                                             | 2.3 | 17        |
| 18 | Insights into the Therapeutic Potential of Glucocorticoid Receptor Modulators for<br>Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 2137.                                          | 4.1 | 16        |

MARIA CLAUDIA GONZALEZ

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Therapeutic effects of progesterone in animal models of neurological disorders. CNS and Neurological Disorders - Drug Targets, 2013, 12, 1205-18.                                                                                   | 1.4 | 16        |
| 20 | Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration. Brain Research, 2020, 1727, 146551.                                                                                        | 2.2 | 15        |
| 21 | Progesterone treatment modulates mRNA OF neurosteroidogenic enzymes in a murine model of multiple sclerosis. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 421-429.                                             | 2.5 | 12        |
| 22 | Comparative effects of progesterone and the synthetic progestin norethindrone on neuroprotection<br>in a model of spontaneous motoneuron degeneration. Journal of Steroid Biochemistry and Molecular<br>Biology, 2019, 192, 105385. | 2.5 | 11        |
| 23 | Progesterone and Allopregnanolone Neuroprotective Effects in the Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Cellular and Molecular Neurobiology, 2022, 42, 23-40.                                                        | 3.3 | 11        |
| 24 | Neuroprotective Effects of Testosterone in Male Wobbler Mouse, a Model of Amyotrophic Lateral<br>Sclerosis. Molecular Neurobiology, 2021, 58, 2088-2106.                                                                            | 4.0 | 4         |
| 25 | Introduction to the Special Issue "Neuroactive Steroids― Cellular and Molecular Neurobiology, 2019, 39, 471-472.                                                                                                                    | 3.3 | 0         |
| 26 | Sex steroids, neurosteroidogenesis, and inflammation in multiple sclerosis and related animal models. Current Opinion in Endocrine and Metabolic Research, 2021, 21, 100286.                                                        | 1.4 | 0         |