Mateusz Balcerzak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/197318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review and outlook on high-entropy alloys for hydrogen storage. Energy and Environmental Science, 2021, 14, 5191-5227.	30.8	114
2	Hydrogenation and electrochemical studies of La–Mg–Ni alloys. International Journal of Hydrogen Energy, 2017, 42, 1436-1443.	7.1	50
3	Structure and hydrogen storage properties of mechanically alloyed Ti-V alloys. International Journal of Hydrogen Energy, 2017, 42, 23698-23707.	7.1	48
4	Hydrogen storage and electrochemical properties of mechanically alloyed La1.5-xGdxMg0.5Ni7 (0Ââ‰ÅxÂâ‰Å1.5). International Journal of Hydrogen Energy, 2018, 43, 8897-8906.	7.1	27
5	Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites. Journal of Power Sources, 2015, 280, 435-445.	7.8	26
6	Structural and electrochemical hydrogen storage properties of MgTiNix (xÂ=Â0.1, 0.5, 1, 2) alloys prepared by ball milling. International Journal of Hydrogen Energy, 2016, 41, 11761-11766.	7.1	25
7	Antibacterial Films Based on MOF Composites that Release Iodine Passively or Upon Triggering by Nearâ€Infrared Light. Advanced Functional Materials, 2022, 32, .	14.9	23
8	Mechanochemical Synthesis of (Co,Cu,Mg,Ni,Zn)O High-Entropy Oxide and Its Physicochemical Properties. Journal of Electronic Materials, 2019, 48, 7105-7113.	2.2	21
9	Effect of Cr on the hydrogen storage and electronic properties of BCC alloys: Experimental and first-principles study. International Journal of Hydrogen Energy, 2020, 45, 28996-29008.	7.1	21
10	Electrochemical and structural studies on Ti–Zr–Ni and Ti–Zr–Ni–Pd alloys and composites. Journal of Alloys and Compounds, 2016, 658, 576-587.	5.5	17
11	Electrochemical behavior of nanocrystalline TiNi doped by MWCNTs and Pd. Renewable Energy, 2014, 62, 432-438.	8.9	16
12	Effect of multi-walled carbon nanotubes and palladium addition on the microstructural and electrochemical properties of the nanocrystalline Ti2Ni alloy. International Journal of Hydrogen Energy, 2015, 40, 3288-3299.	7.1	15
13	The phase transformation and electrochemical properties of TiNi alloys with Cu substitution: Experiments and first-principle calculations. International Journal of Hydrogen Energy, 2017, 42, 1444-1450.	7.1	15
14	Hydrogenation properties of nanocrystalline Ti V Mn body-centered-cubic alloys. International Journal of Hydrogen Energy, 2020, 45, 15521-15529.	7.1	13
15	Effect of Ni on electrochemical and hydrogen storage properties of V-rich body-centered-cubic solid solution alloys. International Journal of Hydrogen Energy, 2018, 43, 8395-8403.	7.1	11
16	Dielectric and magnetic properties of (Bi1-xLaxFeO3)0.5(PbTiO3)0.5 ceramics prepared by high energy mechanochemical technique. Journal of Electroceramics, 2015, 35, 33-44.	2.0	9
17	Hydrogenation study of nanostructured Ti-Zr-Ni alloys. Journal of Energy Storage, 2016, 8, 6-11.	8.1	9
18	Influence of carbon catalysts on the improvement of hydrogen storage properties in a body-centered cubic solid solution alloy. Carbon, 2021, 182, 422-434.	10.3	9

#	Article	IF	CITATIONS
19	Influence of Gaseous Activation on Hydrogen Sorption Properties of TiNi and Ti2Ni Alloys. Journal of Materials Engineering and Performance, 2015, 24, 1710-1717.	2.5	7
20	Effect of Ni content on the structure and hydrogenation property of mechanically alloyed TiMgNi x ternary alloys. International Journal of Hydrogen Energy, 2017, 42, 23751-23758.	7.1	6
21	Effect of Substitutional Elements on the Thermodynamic and Electrochemical Properties of Mechanically Alloyed La1.5Mg0.5Ni7â^'xMx alloys (M = Al, Mn). Metals, 2020, 10, 578.	2.3	6
22	XRD and Raman spectroscopy studies of (Bi _{1–<i>x</i>} La <i>_x</i> FeO ₃) _{0.5} (PbTiO ₃) <su solution. Phase Transitions, 2014, 87, 909-921.</su 	ມb ⊵.Ձ. 5 <td>nps soliq</td>	nps soliq
23	Structural, Electrochemical and Hydrogen Sorption Studies of Nanocrystalline Ti-V-Co and Ti-V-Ni-Co Alloys Synthesized by Mechanical Alloying Method. Journal of Materials Engineering and Performance, 2019, 28, 4838-4844.	2.5	5
24	Adsorption of dimeric surfactants in lamellar silicates. Nuclear Instruments & Methods in Physics Research B, 2015, 364, 108-115.	1.4	3
25	The Influence of Pr and Nd Substitution on Hydrogen Storage Properties of Mechanically Alloyed (La,Mg)2Ni7-Type Alloys. Journal of Materials Engineering and Performance, 2018, 27, 6166-6174.	2.5	3
26	Mgâ€Based System for H ₂ Sorption from CH ₄ /H ₂ Gas Mixture. Energy Technology, 2021, 9, 2001079.	3.8	3
27	Effect Of Hot Pressing On The Electrochemical Properties Of Ti-Ni Alloy. Archives of Metallurgy and Materials, 2015, 60, 1335-1340.	0.6	2
28	The Influence of Chemical Modification by Silver on Hydrogen Storage Properties of Nanocrystalline Ti2Ni Alloy. Acta Physica Polonica A, 2014, 126, 892-894.	0.5	1
29	Electric Conductivity of (Bi _{1-x} La _x FeO ₃) _{0.5} (PbTiO ₃) _{0.5} Cer Obtained from Mechanosynthesized Nanopowders. Acta Physica Polonica A, 2014, 126, 971-974.	arðiðs	1
30	Electrochemical and Corrosion Behavior of Nanocrystalline TiNi-Based Alloys and Composite. Acta Physica Polonica A, 2014, 126, 888-891.	0.5	1
31	TiNi-Based Hydrogen Storage Alloys and Compounds. , 2017, , 149-177.		0