Andrew Kentaro Inge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1973012/publications.pdf

Version: 2024-02-01

81 papers 2,858 citations

236925 25 h-index 182427 51 g-index

92 all docs 92 docs citations 92 times ranked 3910 citing authors

#	Article	IF	CITATIONS
1	Simple Approach to Macrocyclic Carbonates with Fast Polymerization Rates and Their Polymer-to-Monomer Regeneration. Macromolecules, 2022, 55, 608-614.	4.8	28
2	Synthesis, crystal structure, and topology of a polycatenated bismuth coordination polymer. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022, 77, 231-236.	0.7	2
3	Solvent Dependency in Stereoselective δâ€Lactam Formation of Chiral αâ€Fluoromalonate Derivatives: Stereodivergent Synthesis of Heterocycles with Fluorine Containing Stereocenters Adjacent to Tertiary Stereocenters. Advanced Synthesis and Catalysis, 2022, 364, 958-965.	4.3	2
4	Sacrificial W Facilitates Selfâ€Reconstruction with Abundant Active Sites for Water Oxidation. Small, 2022, 18, e2107249.	10.0	17
5	A heteroepitaxially grown two-dimensional metal–organic framework and its derivative for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 10408-10416.	10.3	13
6	Microscopic Insights into Cation-Coupled Electron Hopping Transport in a Metal–Organic Framework. Journal of the American Chemical Society, 2022, 144, 5910-5920.	13.7	18
7	Structure of the active pharmaceutical ingredient bismuth subsalicylate. Nature Communications, 2022, 13, 1984.	12.8	22
8	Chiral Lanthanum Metal–Organic Framework with Gated CO ₂ Sorption and Concerted Framework Flexibility. Journal of the American Chemical Society, 2022, 144, 8725-8733.	13.7	18
9	Synthesis of $\hat{l}\pm,\hat{l}^3$ -Chiral Trifluoromethylated Amines through the Stereospecific Isomerization of $\hat{l}\pm$ -Chiral Allylic Amines. Organic Letters, 2022, 24, 3867-3871.	4.6	4
10	Switching O O bond formation mechanism between WNA and I2M pathways by modifying the Ru-bda backbone ligands of water-oxidation catalysts. Journal of Energy Chemistry, 2021, 54, 815-821.	12.9	16
11	3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coordination Chemistry Reviews, 2021, 427, 213583.	18.8	86
12	Surface and bulk reconstruction of CoW sulfides during pH-universal electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 11359-11369.	10.3	21
13	Metalâ€Dependent and Selective Crystallization of CAUâ€10 and MILâ€53 Frameworks through Linker Nitration. Chemistry - A European Journal, 2021, 27, 7696-7703.	3.3	O
14	A Tunable Multivariate Metal–Organic Framework as a Platform for Designing Photocatalysts. Journal of the American Chemical Society, 2021, 143, 6333-6338.	13.7	69
15	Isoreticular Chemistry of Group 13 Metal–Organic Framework Compounds Based on V-Shaped Linker Molecules: Exceptions to the Rule?. Inorganic Chemistry, 2021, 60, 8861-8869.	4.0	4
16	Toward Sustainable Li-Ion Battery Recycling: Green Metal–Organic Framework as a Molecular Sieve for the Selective Separation of Cobalt and Nickel. ACS Sustainable Chemistry and Engineering, 2021, 9, 9770-9778.	6.7	22
17	Stable CAACâ€based Ruthenium Complexes for Dynamic Olefin Metathesis Under Mild Conditions. ChemCatChem, 2021, 13, 4841.	3.7	4
18	Exploring the influence of atomic level structure, porosity, and stability of bismuth(<scp>iii</scp>) coordination polymers on electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 26298-26310.	10.3	14

#	Article	IF	CITATIONS
19	A Comparison of Structure Determination of Small Organic Molecules by 3D Electron Diffraction at Cryogenic and Room Temperature. Symmetry, 2021, 13, 2131.	2.2	5
20	Highly Diastereoselective Palladium-Catalyzed Oxidative Cascade Carbonylative Carbocyclization of Enallenols. Organic Letters, 2020, 22, 417-421.	4.6	8
21	Amorphous WO ₃ induced lattice distortion for a low-cost and high-efficient electrocatalyst for overall water splitting in acid. Sustainable Energy and Fuels, 2020, 4, 1712-1722.	4.9	14
22	Breathing Metal–Organic Framework Based on Flexible Inorganic Building Units. Crystal Growth and Design, 2020, 20, 320-329.	3.0	31
23	Molecular Functionalization of NiO Nanocatalyst for Enhanced Water Oxidation by Electronic Structure Engineering. ChemSusChem, 2020, 13, 5901-5909.	6.8	14
24	A Tetratopic Phosphonic Acid for the Synthesis of Permanently Porous MOFs: Reactor Size-Dependent Product Formation and Crystal Structure Elucidation via Three-Dimensional Electron Diffraction. Inorganic Chemistry, 2020, 59, 13343-13352.	4.0	11
25	A Robust and Biocompatible Bismuth Ellagate MOF Synthesized Under Green Ambient Conditions. Journal of the American Chemical Society, 2020, 142, 16795-16804.	13.7	115
26	Observation of three different linker conformers in a scandium ferrocenedicarboxylate coordination polymer. CrystEngComm, 2020, 22, 5569-5572.	2.6	3
27	A Scandium MOF with an Unprecedented Inorganic Building Unit, Delimiting the Micropore Windows. Inorganic Chemistry, 2020, 59, 8995-9004.	4.0	11
28	An Expandable Hydrogen-Bonded Organic Framework Characterized by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2020, 142, 12743-12750.	13.7	70
29	Polymorphous Indium Metal–Organic Frameworks Based on a Ferrocene Linker: Redox Activity, Porosity, and Structural Diversity. Inorganic Chemistry, 2020, 59, 9969-9978.	4.0	24
30	Silverâ€Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions. Angewandte Chemie - International Edition, 2020, 59, 10391-10395.	13.8	25
31	Silverâ€Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions. Angewandte Chemie, 2020, 132, 10477-10481.	2.0	10
32	New Scandiumâ€containing Coordination Polymers with Linear Linker Molecules: Crystal Structures and Luminescence Properties. European Journal of Inorganic Chemistry, 2020, 2020, 2737-2743.	2.0	5
33	Metal–Organic Frameworks with Hexakis(4-carboxyphenyl)benzene: Extensions to Reticular Chemistry and Introducing Foldable Nets. Journal of the American Chemical Society, 2020, 142, 9471-9481.	13.7	26
34	Waterâ€based Synthesis and Properties of a Scandium 1,4â€Naphthalenedicarboxylate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1373-1379.	1.2	5
35	Permanent porosity and role of sulfonate groups in coordination networks constructed from a new polyfunctional phosphonato-sulfonate linker molecule. Dalton Transactions, 2020, 49, 2724-2733.	3.3	7
36	Hexahydroxytriphenylene for the synthesis of group 13 MOFs – a new inorganic building unit in a β-cristobalite type structure. Dalton Transactions, 2020, 49, 3088-3092.	3.3	14

#	Article	IF	CITATIONS
37	A metal–organic framework for efficient water-based ultra-low-temperature-driven cooling. Nature Communications, 2019, 10, 3025.	12.8	145
38	Catalytic Enantioselective Synthesis of Bicyclic Lactam <i>N</i> , <i>S</i> â€Acetals in One Pot by Cascade Transformations. European Journal of Organic Chemistry, 2019, 2019, 4649-4657.	2.4	3
39	Five New Coordination Polymers with a Bifunctional Phosphonateâ€Sulfonate Linker Molecule. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 732-739.	1.2	3
40	Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. Journal of the American Chemical Society, 2019, 141, 7223-7234.	13.7	484
41	In situ XAS study of the local structure and oxidation state evolution of palladium in a reduced graphene oxide supported Pd(ii) carbene complex during an undirected C–H acetoxylation reaction. Catalysis Science and Technology, 2019, 9, 2025-2031.	4.1	20
42	Versatile Heterogeneous Palladium Catalysts for Diverse Carbonylation Reactions under Atmospheric Carbon Monoxide Pressure. ChemCatChem, 2018, 10, 1089-1095.	3.7	10
43	A Porous Cobalt Tetraphosphonate Metal–Organic Framework: Accurate Structure and Guest Molecule Location Determined by Continuousâ€Rotation Electron Diffraction. Chemistry - A European Journal, 2018, 24, 17429-17433.	3.3	73
44	Multistimuli-Responsive Enaminitrile Molecular Switches Displaying H ⁺ -Induced Aggregate Emission, Metal Ion-Induced Turn-On Fluorescence, and Organogelation Properties. Journal of the American Chemical Society, 2018, 140, 13640-13643.	13.7	46
45	Chemodivergent and Diastereoselective Synthesis of \hat{I}^3 -Lactones and \hat{I}^3 -Lactams: A Heterogeneous Palladium-Catalyzed Oxidative Tandem Process. Journal of the American Chemical Society, 2018, 140, 14604-14608.	13.7	64
46	Lignin Based Molecular Materials – a Zinc Vanillate with a Hydrogen Bonded 4―and 8 onnected Net with a New Topology. Israel Journal of Chemistry, 2018, 58, 1127-1130.	2.3	1
47	Solvent-Dependent Formation of Three New Bi-Metal–Organic Frameworks Using a Tetracarboxylic Acid. Crystal Growth and Design, 2018, 18, 4060-4067.	3.0	39
48	Synthesis, Transformation, Catalysis, and Gas Sorption Investigations on the Bismuth Metal–Organic Framework CAUâ€17. European Journal of Inorganic Chemistry, 2018, 2018, 3496-3503.	2.0	57
49	Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells. Chemical Communications, 2018, 54, 9571-9574.	4.1	49
50	Probing the Evolution of Palladium Species in Pd@MOF Catalysts during the Heck Coupling Reaction: An Operando X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 2018, 140, 8206-8217.	13.7	70
51	A novel bismuth-containing metal–organic framework: the first example of a flexible bismuth MOF. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e367-e367.	0.1	0
52	Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates. Zeitschrift Fur Kristallographie - Crystalline Materials, 2017, 232, 245-253.	0.8	7
53	Effect of partial linker fluorination and linker extension on structure and properties of the Al-MOF CAU-10. Microporous and Mesoporous Materials, 2017, 249, 128-136.	4.4	14
54	Polymorphous Al-MOFs Based on V-Shaped Linker Molecules: Synthesis, Properties, and in Situ Investigation of Their Crystallization. Inorganic Chemistry, 2017, 56, 5851-5862.	4.0	25

#	Article	IF	CITATIONS
55	Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. Chemical Communications, 2017, 53, 7018-7021.	4.1	86
56	A multi-purpose reaction cell for the investigation of reactions under solvothermal conditions. Review of Scientific Instruments, 2017, 88, 104102.	1.3	22
57	A Water Based Synthesis of Ultrathin Hydrated Vanadium Pentoxide Nanosheets for Lithium Battery Application: Free Standing Electrodes or Conventionally Casted Electrodes?. Electrochimica Acta, 2017, 252, 254-260.	5.2	14
58	Design and synthesis of theranostic antibiotic nanodrugs that display enhanced antibacterial activity and luminescence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8464-8469.	7.1	76
59	Investigation of the effect of polar functional groups on the crystal structures of indium MOFs. CrystEngComm, 2017, 19, 4622-4628.	2.6	15
60	Bismuth coordination polymers: from centuries-old medicines to unprecedented topological complexity. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C843-C843.	0.1	1
61	A Germanate with a Collapsible Open-Framework. Crystal Growth and Design, 2016, 16, 6967-6973.	3.0	4
62	Dihydroxybenzoquinone as Linker for the Synthesis of Permanently Porous Aluminum Metal–Organic Frameworks. Inorganic Chemistry, 2016, 55, 7425-7431.	4.0	48
63	Unprecedented Topological Complexity in a Metal–Organic Framework Constructed from Simple Building Units. Journal of the American Chemical Society, 2016, 138, 1970-1976.	13.7	155
64	New Al-MOFs Based on Sulfonyldibenzoate Ions: A Rare Example of Intralayer Porosity. Inorganic Chemistry, 2015, 54, 492-501.	4.0	43
65	SU-79: a novel germanate with 3D 10- and 11-ring channels templated by a square-planar nickel complex. Inorganic Chemistry Frontiers, 2014, 1, 278-283.	6.0	6
66	SU-77: An Open-Framework Germanate Containing $12\ \tilde{A}-10\ \tilde{A}-10$ -Ring Channels Solved by Combining Rotation Electron Diffraction and Powder X-ray Diffraction. Crystal Growth and Design, 2014, 14, 5072-5078.	3.0	11
67	Synthesis and Structure determination of a new interrupted zeolite PKU-14. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1707-C1707.	0.1	1
68	Catalytic Water Oxidation by Mononuclear Ru Complexes with an Anionic Ancillary Ligand. Inorganic Chemistry, 2013, 52, 2505-2518.	4.0	77
69	Insights into Ru-Based Molecular Water Oxidation Catalysts: Electronic and Noncovalent-Interaction Effects on Their Catalytic Activities. Inorganic Chemistry, 2013, 52, 7844-7852.	4.0	136
70	Solving complex open-framework structures from X-ray powder diffraction by direct-space methods using composite building units. Journal of Applied Crystallography, 2013, 46, 1094-1104.	4.5	10
71	PKU-14: combining X-ray powder diffraction, NMR and IR spectroscopy. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s113-s113.	0.3	0
72	SU-66: combining X-ray powder diffraction, electron diffraction and IR spectroscopy. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s106-s106.	0.3	0

#	Article	IF	CITATIONS
73	SU-75: a disordered Ge10 germanate with pcu topology. Dalton Transactions, 2012, 41, 12358.	3.3	6
74	Three low-dimensional open-germanates based on the 44 net. CrystEngComm, 2012, 14, 5465.	2.6	9
75	A Stacking Faults-Containing Silicogermanate with 24-Ring Channels and Unbranched Zweier Silica Double Chains. Crystal Growth and Design, 2012, 12, 3714-3719.	3.0	9
76	SU-62: Synthesis and Structure Investigation of a Germanate with a Novel Three-Dimensional Net and Interconnected 10- and 14-Ring Channels. Crystal Growth and Design, 2012, 12, 369-375.	3.0	13
77	The Structure of a Complex Open-Framework Germanate Obtained by Combining Powder Charge-Flipping and Simulated Annealing. Crystal Growth and Design, 2012, 12, 4853-4860.	3.0	10
78	A Highly Active Bifunctional Iridium Complex with an Alcohol/Alkoxideâ€Tethered Nâ€Heterocyclic Carbene for Alkylation of Amines with Alcohols. Chemistry - A European Journal, 2012, 18, 14510-14519.	3.3	157
79	Investigation of the GeO2-1,6-Diaminohexane-Water-Pyridine-HF Phase Diagram Leading to the Discovery of Two Novel Layered Germanates with Extra-Large Rings. Inorganic Chemistry, 2011, 50, 201-207.	4.0	29
80	Synthesis and Characterization of Oligonuclear Ru, Co and Cu Oxidation Catalysts. European Journal of Inorganic Chemistry, 2010, 2010, 5462-5470.	2.0	25
81	Open-Framework Germanate Built from the Hexagonal Packing of Rigid Cylinders. Inorganic Chemistry, 2009, 48, 9962-9964.	4.0	25