Minori Uchimiya

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1972842/minori-uchimiya-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

74	5,867	35	75
papers	citations	h-index	g-index
75	6,585 ext. citations	6	6.04
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
74	Rhizospheric pore-water content predicts the biochar-attenuated accumulation, translocation, and toxicity of cadmium to lettuce. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 111675	7	3
73	Juice chemical properties of 24 sorghum cultivars under varying levels of sugarcane aphid (Melanaphis sacchari) infestation. <i>Arthropod-Plant Interactions</i> , 2021 , 15, 707-719	2.2	1
72	Chemical Speciation, Plant Uptake, and Toxicity of Heavy Metals in Agricultural Soils. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 12856-12869	5.7	35
71	Proton-Coupled Electron Transfers of Defense Phytochemicals in Sorghum ((L.) Moench). <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 12978-12983	5.7	3
70	Soil microbiome-induced changes in the priming effects of C-labelled substrates from rice residues. <i>Science of the Total Environment</i> , 2020 , 726, 138562	10.2	5
69	Effect of amendments on soil Cd sorption and trophic transfer of Cd and mineral nutrition along the food chain. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 189, 110045	7	10
68	Influence of summer fallow on aromatic secondary products in sugarcane (Saccharum spp. hybrids). <i>Journal of Agriculture and Food Research</i> , 2020 , 2, 100064	2.6	1
67	Electroactivity of polyphenols in sweet sorghum (Sorghum bicolor (L.) Moench) cultivars. <i>PLoS ONE</i> , 2020 , 15, e0234509	3.7	1
66	Rapid Data Analytics to Relate Sugarcane Aphid [(Melanaphis sacchari (Zehntner)] Population and Damage on Sorghum (Sorghum bicolor (L.) Moench). <i>Scientific Reports</i> , 2019 , 9, 370	4.9	5
65	Selective oxidation of colour-inducing constituents in raw sugar cane juice with potassium permanganate. <i>Food Chemistry</i> , 2019 , 298, 125036	8.5	4
64	Particle Size- and Crystallinity-Controlled Phosphorus Release from Biochars. <i>Energy & Description</i> 2019, 33, 5343-5351	4.1	6
63	Three-Year Field Observation of Biochar-Mediated Changes in Soil Organic Carbon and Microbial Activity. <i>Journal of Environmental Quality</i> , 2019 , 48, 717-726	3.4	6
62	Accumulation of Carboxylate and Aromatic Fluorophores by a Pest-Resistant Sweet Sorghum [(L.) Moench] Genotype. <i>ACS Omega</i> , 2019 , 4, 20519-20529	3.9	4
61	Effects of soil amendments on cadmium transfer along the lettuce-snail food chain: Influence of chemical speciation. <i>Science of the Total Environment</i> , 2019 , 649, 801-807	10.2	8
60	Prediction of Carboxylic and Polyphenolic Chemical Feedstock Quantities in Sweet Sorghum. <i>Energy & Energy & En</i>	4.1	5
59	Bioaccumulation of CeO Nanoparticles by Earthworms in Biochar-Amended Soil: A Synchrotron Microspectroscopy Study. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 6609-6618	5.7	18
58	Detection of Biochar Carbon by Fluorescence and Near-Infrared-Based Chemometrics. <i>Aquatic Geochemistry</i> , 2018 , 24, 345-361	1.7	2

(2015-2018)

57	In Situ and Ex Situ 2D Infrared/Fluorescence Correlation Monitoring of Surface Functionality and Electron Density of Biochars. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8055-8062	8.3	6
56	Roles of reversible and irreversible aggregation in sugar processing. <i>Critical Reviews in Food Science and Nutrition</i> , 2017 , 57, 1206-1214	11.5	1
55	Exposure of agricultural crops to nanoparticle CeO in biochar-amended soil. <i>Plant Physiology and Biochemistry</i> , 2017 , 110, 147-157	5.4	43
54	Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review. <i>GCB Bioenergy</i> , 2017 , 9, 990-1004	5.6	78
53	Structural Transformation of Biochar Black Carbon by C Superstructure: Environmental Implications. <i>Scientific Reports</i> , 2017 , 7, 11787	4.9	3
52	Chemical Analysis of Fermentable Sugars and Secondary Products in 23 Sweet Sorghum Cultivars. Journal of Agricultural and Food Chemistry, 2017 , 65, 7629-7637	5.7	12
51	Surface Interactions between Gold Nanoparticles and Biochar. Scientific Reports, 2017, 7, 5027	4.9	19
50	Electrochemical Evaluation of Sweet Sorghum Fermentable Sugar Bioenergy Feedstock. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 7352-7364	8.3	8
49	Global demand for rare earth resources and strategies for green mining. <i>Environmental Research</i> , 2016 , 150, 182-190	7.9	254
48	Structure-reactivity relationships between the fluorescent chromophores and antioxidant activity of grain and sweet sorghum seeds. <i>Food Science and Nutrition</i> , 2016 , 4, 811-817	3.2	4
47	Field-scale fluorescence fingerprinting of biochar-borne dissolved organic carbon. <i>Journal of Environmental Management</i> , 2016 , 169, 184-90	7.9	30
46	Across-Phase Biomass Pyrolysis Stoichiometry, Energy Balance, and Product Formation Kinetics. <i>Energy & Energy </i>	4.1	9
45	The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space. <i>Environmental Research</i> , 2016 , 151, 304-312	7.9	11
44	Characterization of narrow micropores in almond shell biochars by nitrogen, carbon dioxide, and hydrogen adsorption. <i>Industrial Crops and Products</i> , 2015 , 67, 33-40	5.9	15
43	Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management, 2015 , 151, 443-9	7.9	71
42	Dissolved Phosphorus Speciation of Flash Carbonization, Slow Pyrolysis, and Fast Pyrolysis Biochars. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 1642-1649	8.3	63
41	Influence of Carbonization Methods on the Aromaticity of Pyrogenic Dissolved Organic Carbon. <i>Energy & Dissolved Organic Carbon.</i>	4.1	20
40	Heteroaggregation of Cerium Oxide Nanoparticles and Nanoparticles of Pyrolyzed Biomass. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	64

39	Fate of Higher-Mass Elements and Surface Functional Groups during the Pyrolysis of Waste Pecan Shell. <i>Energy & Damp; Fuels</i> , 2015 , 29, 8095-8101	4.1	14
38	New Applications of X-ray Tomography in Pyrolysis of Biomass: Biochar Imaging. <i>Energy & Energy & amp; Fuels</i> , 2015 , 29, 1628-1634	4.1	27
37	Uncovering surface area and micropores in almond shell biochars by rainwater wash. <i>Chemosphere</i> , 2014 , 111, 129-34	8.4	29
36	Influence of pH, Ionic Strength, and Multidentate Ligand on the Interaction of CdII with Biochars. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 2019-2027	8.3	49
35	Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. <i>Journal of Agricultural and Food Chemistry</i> , 2014 , 62, 1802-9	5.7	93
34	Intrinsic Fluorescence ExcitationEmission Matrix Spectral Features of Cottonseed Protein Fractions and the Effects of Denaturants. <i>JAOCS, Journal of the American Oil ChemistspSociety</i> , 2014 , 91, 1489-1497	1.8	26
33	Influence of post-treatment strategies on the properties of activated chars from broiler manure. <i>Chemosphere</i> , 2014 , 95, 96-104	8.4	29
32	Comparison of Biochar Formation from Various Agricultural By-Products Using FTIR Spectroscopy. <i>Modern Applied Science</i> , 2014 , 9,	1.3	63
31	Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 104, 84-94	6	105
30	In situ and ex situ spectroscopic monitoring of biochar's surface functional groups. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 102, 53-59	6	93
29	Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 7679-88	5.7	44
28	Activated biochar removes 100 % dibromochloropropane from field well water. <i>Environmental Chemistry Letters</i> , 2013 , 11, 271-275	13.3	38
27	Mineral Composition of Cottonseed is Affected by Fertilization Management Practices. <i>Agronomy Journal</i> , 2013 , 105, 341-350	2.2	40
26	Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. <i>Bioresource Technology</i> , 2012 , 107, 419-28	11	825
25	Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry, 2012 , 60, 5035-44	5.7	104
24	Sorption of triazine and organophosphorus pesticides on soil and biochar. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 2989-97	5.7	81
23	Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. Journal of Agricultural and Food Chemistry, 2012 , 60, 1798-809	5.7	199
22	Retention of heavy metals in a Typic Kandiudult amended with different manure-based biochars. Journal of Environmental Quality, 2012 , 41, 1138-49	3.4	58

(2007-2012)

21	Synthesis and characterization of a novel phosphorus ditrogen-containing flame retardant and its application for textile. <i>Polymers for Advanced Technologies</i> , 2012 , 23, 1036-1044	3.2	39
20	Development of an environmentally friendly halogen-free phosphorusflitrogen bond flame retardant for cotton fabrics. <i>Polymers for Advanced Technologies</i> , 2012 , 23, 1555-1563	3.2	64
19	Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 2501-10	5.7	535
18	Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. <i>Chemosphere</i> , 2011 , 82, 1431-7	8.4	224
17	Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms. <i>Chemosphere</i> , 2011 , 82, 1438-47	8.4	38
16	Qualitative analysis of volatile organic compounds on biochar. <i>Chemosphere</i> , 2011 , 85, 869-82	8.4	323
15	Thermal response and recyclability of poly(stearylacrylate-co-ethylene glycol dimethacrylate) gel as a VOCs absorbent. <i>Polymer Bulletin</i> , 2011 , 67, 915-926	2.4	10
14	Flame retardant properties of triazine phosphonates derivative with cotton fabric. <i>Fibers and Polymers</i> , 2011 , 12, 334-339	2	55
13	Screening biochars for heavy metal retention in soil: role of oxygen functional groups. <i>Journal of Hazardous Materials</i> , 2011 , 190, 432-41	12.8	443
12	Sorption of deisopropylatrazine on broiler litter biochars. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 12350-6	5.7	114
11	Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 5538-44	5.7	554
10	Reduction of Substituted p-Benzoquinones by Fell Near Neutral pH. <i>Aquatic Geochemistry</i> , 2010 , 16, 173	3-11 /8 8	9
9	Reductive Transformation of 2,4-Dinitrotoluene: Roles of Iron and Natural Organic Matter. <i>Aquatic Geochemistry</i> , 2010 , 16, 547-562	1.7	10
8	One-electron standard reduction potentials of nitroaromatic and cyclic nitramine explosives. <i>Environmental Pollution</i> , 2010 , 158, 3048-53	9.3	35
7	Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. <i>Chemosphere</i> , 2010 , 80, 935-40	8.4	340
6	Iron(III) Bioreduction in Soil in the Presence of Added Humic Substances. <i>Soil Science Society of America Journal</i> , 2009 , 73, 65-71	2.5	54
5	Reversible redox chemistry of quinones: impact on biogeochemical cycles. <i>Chemosphere</i> , 2009 , 77, 451-	8 8.4	132
4	Fingerprinting localized dioxin contamination: Ichihara Anchorage case. <i>Environmental Science</i> & amp; Technology, 2007 , 41, 3864-70	10.3	25

3	rime trends in sources and dechlorination pathways of dioxins in agrochemically contaminated sediments. <i>Environmental Science & Environmental Science</i>	10.3	19
2	Aqueous oxidation of substituted dihydroxybenzenes by substituted benzoquinones. <i>Environmental Science & Environmental Scienc</i>	10.3	24
1	Redox reactions between iron and quinones: Thermodynamic constraints. <i>Geochimica Et Cosmochimica Acta</i> , 2006 , 70, 1388-1401	5.5	75