Kensuke Konishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1972775/publications.pdf

Version: 2024-02-01

623734 580821 14 44 666 25 citations g-index h-index papers 44 44 44 658 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selection of ferrite powder for thermal coagulation therapy with alternating magnetic field. Journal of Materials Science, 2005, 40, 135-138.	3.7	69
2	Heating of Ferrite Powder by an AC Magnetic Field for Local Hyperthermia. Japanese Journal of Applied Physics, 2002, 41, 1620-1621.	1.5	66
3	Magnetic Properties of 1,5-Dimethylverdazyl Radical Crystals. Ferromagnetism in 3-(4-Chlorophenyl)-1,5-dimethyl-6-thioxoverdazyl Radical Crystal. The Journal of Physical Chemistry, 1996, 100, 9658-9663.	2.9	44
4	Pressure effects on intermolecular interactions of the organic ferromagnetic crystalline \hat{l}^2 -phasep-nitrophenyl nitronyl nitroxide. Physical Review B, 1996, 53, 3374-3380.	3.2	42
5	Experimental Study of Quantum Statistics for theS=12Quasi-One-Dimensional Organic Ferromagnet. Physical Review Letters, 1995, 74, 1673-1676.	7.8	38
6	Bulk ferro- and antiferro-magnetic behavior in 1,5-dimethyl verdazyl radical crystals with similar molecular structure. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 1449-1450.	2.3	37
7	Heating ferrite powder with AC magnetic field for thermal coagulation therapy. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 2428-2429.	2.3	34
8	Molecular Photoconductor with Simultaneously Photocontrollable Localized Spins. Journal of the American Chemical Society, 2012, 134, 18656-18666.	13.7	32
9	Kinetic Study of the Prooxidant Effect of αâ€Tocopherol. Hydrogen Abstraction from Lipids by αâ€Tocopheroxyl Radical. Lipids, 2009, 44, 935-43.	1.7	30
10	Size dependences of crystal structure and magnetic properties of DyMnO 3 nanoparticles. Journal of Magnetism and Magnetic Materials, 2013, 345, 288-293.	2.3	27
11	Size Dependence of Crystal Structure and Magnetic Properties of NiO Nanoparticles in Mesoporous Silica. Journal of Physical Chemistry C, 2015, 119, 1194-1200.	3.1	27
12	Shaping the Magnetic Properties of BaFeO ₃ Perovskite-Type by Alkaline-Earth Doping. Journal of Physical Chemistry C, 2018, 122, 2983-2989.	3.1	23
13	Magnetic Behavior of Organic Free Radicals with Localized and Delocalized Electrons. Journal of the Physical Society of Japan, 1989, 58, 3361-3370.	1.6	21
14	Magnetism of one-dimensional copper oxides related to HTSC. Journal of Magnetism and Magnetic Materials, 1992, 104-107, 817-818.	2.3	16
15	Preferential site occupation of M atoms and the Curie temperature in Y2Fe17-xMx (M = Al, Si, Ga). Journal of Magnetism and Magnetic Materials, 1998, 177-181, 1119-1120.	2.3	13
16	Antiferromagnetic Long-Range Ordering of Organic Free Radicals Under High Pressure. Molecular Crystals and Liquid Crystals, 1993, 233, 97-104.	0.3	11
17	Magnetic Entropy Analysis of Commensurate Structuresin PrCo2Si2. Journal of the Physical Society of Japan, 1991, 60, 2538-2541.	1.6	10
18	Giant Photoconductivity in NMQ[Ni(dmit) ₂]. European Journal of Inorganic Chemistry, 2014, 4000-4009.	2.0	10

#	Article	IF	CITATIONS
19	Heat Capacity of PrCo2Si2. Japanese Journal of Applied Physics, 1993, 32, 334.	1.5	9
20	Prototype one-dimensional Heisenberg ferromagnetic interaction in the organic radical crystal. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 1635-1636.	2.3	9
21	Thermodynamical study of the magnetic transition in commensurate phases in PrCo2Si2. Journal of Magnetism and Magnetic Materials, 1992, 104-107, 901-902.	2.3	8
22	High pressure effects on isotropic Nd2Fe14B magnet accompanying change in coercive field. Journal of Applied Physics, 2015, 118 , .	2.5	8
23	Effect of size on the magnetic properties and crystal structure of magnetically frustrated DyMn2O5 nanoparticles. Physical Review B, 2018, 98, .	3.2	8
24	The Magnetovolume Effect of an Amorphous Magnet Gd67Ni33. Journal of the Physical Society of Japan, 2003, 72, 1184-1190.	1.6	7
25	Heat capacities of helium in one- and three-dimensional channels at low temperatures. Journal of Physics Condensed Matter, 1993, 5, 1619-1632.	1.8	6
26	Magnetism of the \hat{I}^2 -Phase p-Nitrophenyl Nitronyl Nitroxide Crystal. Molecular Crystals and Liquid Crystals, 1995, 273, 57-66.	0.3	6
27	Magnetic Properties of 1,5-Dimethylverdazyl Radical Crystals. Finding of New Organic Ferromagnet, <i>p</i> -CDTV. Molecular Crystals and Liquid Crystals, 1996, 279, 195-208.	0.3	6
28	Magnetic Phase Diagram of Random Mixture Fe1-xMnxCl2Â-2H2O with Competing Anisotropies and Exchange Interactions. Journal of the Physical Society of Japan, 2000, 69, 3980-3982.	1.6	6
29	Magnetic ordering of spin systems having fractal dimensions Experimental study. European Physical Journal B, 2013, 86, 1.	1.5	6
30	Simultaneous observation of heat capacity and magnetic susceptibility of a genuine organic ferromagnet under high pressures. Thermochimica Acta, 1995, 266, 175-184.	2.7	5
31	Pressure-induced reduction of the Curie temperature of the organic ferromagnet p-NPNN. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 1451-1452.	2.3	5
32	Spin glass and Invar effect for Fe(ZrB) amorphous alloys. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 125-126.	2.3	5
33	Pressure induced enhancement of ordering temperature of a ferromagnetic organic radical crystal: p-CDTV. European Physical Journal D, 1996, 46, 2107-2108.	0.4	4
34	Pressure Effect on the Curie Temperature and Inter- Molecular Interactions in Organic Ferromagnet \hat{l}^2 -Phase <i>p</i> -Npnn. Molecular Crystals and Liquid Crystals, 1996, 279, 115-122.	0.3	4
35	Magnetovolume effect of Fe sublattice in R2Fe17. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 993-995.	2.3	4
36	Numerical study of temperature distribution in tissue for thermal coagulation therapy. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 2426-2427.	2.3	3

#	Article	IF	CITATIONS
37	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:		2
38	Heat capacities of 3He and 4He in one- and three-dimensional channels. Physica B: Condensed Matter, 1990, 165-166, 571-572.	2.7	1
39	Magnetic properties of heavy fermion compounds Ce2Fe17â^'xAlx. Physica B: Condensed Matter, 2000, 284-288, 1275-1276.	2.7	1
40	Strong suppression of Curie temperature of spin-polarized ferromagnet La1â^'xSrxMnO3 by application of dynamic strain. AIP Advances, 2020, 10, 025220.	1.3	1
41	Heat capacities of 3He and 4He in one- and three-dimensional channels. Physica B: Condensed Matter, 1990, 165-166, 571-572.	2.7	1
42	Electrical Resistivity under Uniaxial Pressures of $\langle i \rangle \hat{l}^2 \langle i $	1.6	1
43	Heat capacities of neon in one- and three-dimensional channels at low temperatures. Journal of Physics Condensed Matter, 1994, 6, 2341-2346.	1.8	0
44	Structual and magnetic properties of MFe2O4 (M=Ni, Mg) nano hollow spheres. Journal of the Korean Physical Society, 2013, 63, 672-675.	0.7	O