Jennifer M Kavran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1972746/publications.pdf

Version: 2024-02-01

567281 580821 2,303 25 15 citations h-index papers

g-index 27 27 27 3808 docs citations times ranked citing authors all docs

25

#	Article	IF	CITATIONS
1	The minimal structure for iodotyrosine deiodinase function is defined by an outlier protein from the thermophilic bacterium Thermotoga neapolitana. Journal of Biological Chemistry, 2021, 297, 101385.	3.4	4
2	Increasing kinase domain proximity promotes MST2 autophosphorylation during Hippo signaling. Journal of Biological Chemistry, 2020, 295, 16166-16179.	3.4	10
3	Biophysical characterization of SARAH domain–mediated multimerization of Hippo pathway complexes in Drosophila. Journal of Biological Chemistry, 2020, 295, 6202-6213.	3.4	9
4	Salvador has an extended SARAH domain that mediates binding to Hippo kinase. Journal of Biological Chemistry, 2018, 293, 5532-5543.	3.4	13
5	Structural Insights into the Regulation of Hippo Signaling. ACS Chemical Biology, 2017, 12, 601-610.	3.4	15
6	Active Site Binding Is Not Sufficient for Reductive Deiodination by Iodotyrosine Deiodinase. Biochemistry, 2017, 56, 1130-1139.	2.5	14
7	Immunoaffinity Purification of Proteins. Methods in Enzymology, 2015, 559, 27-36.	1.0	1
8	A Naturally Occurring Repeat Protein with High Internal Sequence Identity Defines a New Class of TPR-like Proteins. Structure, 2015, 23, 2055-2065.	3.3	28
9	46,XY Gonadal Dysgenesis due to a Homozygous Mutation in Desert Hedgehog (<i>DHH</i>) Identified by Exome Sequencing. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1022-E1029.	3.6	59
10	Lysis of Mammalian and Sf9 Cells. Methods in Enzymology, 2014, 536, 47-52.	1.0	1
11	Regulation of S-Adenosylhomocysteine Hydrolase by Lysine Acetylation. Journal of Biological Chemistry, 2014, 289, 31361-31372.	3.4	24
12	Single Cell Cloning of a Stable Mammalian Cell Line. Methods in Enzymology, 2014, 536, 165-172.	1.0	14
13	Silver Staining of SDS-polyacrylamide Gel. Methods in Enzymology, 2014, 541, 169-176.	1.0	32
14	Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16724-16729.	7.1	101
15	Coupling Antibody to Cyanogen Bromide-Activated Sepharose. Methods in Enzymology, 2014, 541, 27-34.	1.0	37
16	How IGF-1 activates its receptor. ELife, 2014, 3, .	6.0	154
17	Generating Mammalian Stable Cell Lines by Electroporation. Methods in Enzymology, 2013, 529, 209-226.	1.0	11
18	Transient Mammalian Cell Transfection with Polyethylenimine (PEI). Methods in Enzymology, 2013, 529, 227-240.	1.0	448

#	Article	IF	CITATION
19	All Mammalian Hedgehog Proteins Interact with Cell Adhesion Molecule, Down-regulated by Oncogenes (CDO) and Brother of CDO (BOC) in a Conserved Manner. Journal of Biological Chemistry, 2010, 285, 24584-24590.	3.4	53
20	In Vitro Enzymatic Characterization of Near Full Length EGFR in Activated and Inhibited States. Biochemistry, 2009, 48, 6624-6632.	2.5	47
21	Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11268-11273.	7.1	194
22	Structure of the Base of the L7/L12 Stalk of the Haloarcula marismortui Large Ribosomal Subunit: Analysis of L11 Movements. Journal of Molecular Biology, 2007, 371, 1047-1059.	4.2	49
23	Structural Basis for Discrimination of 3-Phosphoinositides by Pleckstrin Homology Domains. Molecular Cell, 2000, 6, 373-384.	9.7	333
24	Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Current Biology, 1998, 8, 1399-1404.	3.9	247
25	Specificity and Promiscuity in Phosphoinositide Binding by Pleckstrin Homology Domains. Journal of Biological Chemistry, 1998, 273, 30497-30508.	3.4	398