Wipakorn Jevasuwan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1972626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defect control and Si/Ge core–shell heterojunction formation on silicon nanowire surfaces formed using the top-down method. Nanotechnology, 2022, 33, 135602.	2.6	3
2	ZnO/Ge core–shell nanowires and Ge nanotubes fabricated by chemical vapor deposition and wet etching. Nanotechnology, 2022, 33, 325602.	2.6	1
3	Photosensitizer Encryption with Aggregation Enhanced Singlet Oxygen Production. Journal of the American Chemical Society, 2022, 144, 10830-10843.	13.7	19
4	Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly. Applied Catalysis B: Environmental, 2021, 285, 119755.	20.2	86
5	Functionalized aluminum-catalyzed silicon nanowire formation and radial junction photovoltaic devices. Nanoscale, 2021, 13, 6798-6808.	5.6	5
6	High-capacity CVD-grown Ge nanowire anodes for lithium-ion batteries: simple chemical etching approach for oxide removal. Journal of Materials Science: Materials in Electronics, 2021, 32, 2103-2112.	2.2	2
7	Efficiency enhancement of Si nanostructure hybrid solar cells by optimizing non-radiative energy transfer from Si quantum dots. Nano Energy, 2021, 82, 105728.	16.0	22
8	Silicon nanowires covered with on-site fabricated nanowire-shape graphene for Schottky junction solar cells. Solar Energy, 2021, 224, 666-671.	6.1	6
9	Surface-Enhanced Raman Spectroscopy (SERS) of Neonicotinoid Insecticide Thiacloprid Assisted by Silver and Gold Nanostructures. Applied Spectroscopy, 2020, 74, 357-364.	2.2	10
10	Adjustable metal particle grid formed through upward directed solid-state dewetting using silicon nanowires. Nanoscale Advances, 2020, 2, 5607-5614.	4.6	3
11	Ag and Au nanostructures for surfaceâ€enhanced Raman spectroscopy of Mospilan 20 SP (acetamiprid). Journal of Raman Spectroscopy, 2020, 51, 2398-2407.	2.5	8
12	Silicon Nanotubes Fabricated by Wet Chemical Etching of ZnO/Si Core–Shell Nanowires. Nanomaterials, 2020, 10, 2535.	4.1	8
13	Marimo-Bead-Supported Core–Shell Nanocomposites of Titanium Nitride and Chromium-Doped Titanium Dioxide as a Highly Efficient Water-Floatable Green Photocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 31327-31339.	8.0	24
14	Surface-enhanced Raman spectroscopy of neonicotinoid insecticide imidacloprid, assisted by gold and silver nanostructures. Spectroscopy Letters, 2020, 53, 184-193.	1.0	5
15	On-site growth method of 3D structured multi-layered graphene on silicon nanowires. Nanoscale Advances, 2020, 2, 1718-1725.	4.6	5
16	Nanomolecular singlet oxygen photosensitizers based on hemiquinonoid-resorcinarenes, the fuchsonarenes. Chemical Science, 2020, 11, 2614-2620.	7.4	7
17	Interfacial intermixing of Ge/Si core–shell nanowires by thermal annealing. Nanoscale, 2020, 12, 7572-7576.	5.6	9
18	Controlling Catalyst-Free Formation and Hole Gas Accumulation by Fabricating Si/Ge Core–Shell and Si/Ge/Si Coreâ^'Double Shell Nanowires. ACS Nano, 2019, 13, 13403-13412.	14.6	12

#	Article	IF	CITATIONS
19	Au–Sn Catalyzed Growth of Ge _{1–<i>x</i>} Sn _{<i>x</i>} Nanowires: Growth Direction, Crystallinity, and Sn Incorporation. Nano Letters, 2019, 19, 6270-6277.	9.1	22
20	Cation Vacancy-Initiated CO ₂ Photoreduction over ZnS for Efficient Formate Production. ACS Energy Letters, 2019, 4, 1387-1393.	17.4	102
21	Single grain growth of Si thin film on insulating substrate by limited region aluminum induced crystallization. Materials Letters, 2019, 252, 100-102.	2.6	8
22	Realization and direct observation of five normal and parametric modes in silicon nanowire resonators by <i>in situ</i> transmission electron microscopy. Nanoscale Advances, 2019, 1, 1784-1790.	4.6	4
23	Au and Ag films and nanostructures for detection of fungicide mancozeb: SERS analyses. , 2019, , .		9
24	Highly Air-Stable Solution-Processed and Low-Temperature Organic/Inorganic Nanostructure Hybrid Solar Cells. ACS Applied Energy Materials, 2019, 2, 2637-2644.	5.1	18
25	Three-dimensional radial junction solar cell based on ordered silicon nanowires. Nanotechnology, 2019, 30, 344001.	2.6	10
26	Multimodal switching of a redox-active macrocycle. Nature Communications, 2019, 10, 1007.	12.8	20
27	Surface-Enhanced Raman Spectroscopy (SERS) of Mancozeb and Thiamethoxam Assisted by Gold and Silver Nanostructures Produced by Laser Techniques on Paper. Applied Spectroscopy, 2019, 73, 313-319.	2.2	13
28	Fabrication of high-performance ordered radial junction silicon nanopencil solar cells by fine-tuning surface carrier recombination and structure morphology. Nano Energy, 2019, 56, 604-611.	16.0	13
29	Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrodes. Applied Surface Science, 2018, 439, 1057-1064.	6.1	10
30	SERS analyses of thiamethoxam assisted by Ag films and nanostructures produced by laser techniques. Journal of Raman Spectroscopy, 2018, 49, 397-403.	2.5	15
31	Hole gas accumulation in Si/Ge core–shell and Si/Ge/Si core–double shell nanowires. Nanoscale, 2018, 10, 21062-21068.	5.6	15
32	Control of grain size and crystallinity of poly-Si films on quartz by Al-induced crystallization. CrystEngComm, 2017, 19, 2305-2311.	2.6	23
33	Laser nanostructuring for plasmon enhancement of Ag/ZnO optical characteristics. , 2017, , .		2
34	Laser-assisted approach for synthesis of plasmonic Ag/ZnO nanostructures. Superlattices and Microstructures, 2017, 109, 886-896.	3.1	8
35	High-efficiency silicon hybrid solar cells employing nanocrystalline Si quantum dots and Si nanotips for energy management. Nano Energy, 2017, 35, 154-160.	16.0	49
36	Functionalization of Silicon Nanostructures for Energyâ€Related Applications. Small, 2017, 13, 1701713.	10.0	49

0

#	Article	IF	CITATIONS
37	Novel Silicon Nanowire Electrodes Grown by Chemical Vapor Deposition Method for Highâ€Performance Electrochemical Capacitors. Bulletin of the Korean Chemical Society, 2017, 38, 1047-1051.	1.9	0
38	Diffused back surface field formation in combination with two-step H ₂ annealing for improvement of silicon nanowire-based solar cell efficiency. Japanese Journal of Applied Physics, 2017, 56, 04CP01.	1.5	14
39	Improvement of silicon nanowire solar cells made by metal catalyzed electroless etching and nano imprint lithography. Japanese Journal of Applied Physics, 2017, 56, 04CP03.	1.5	5
40	Pencil-shaped silicon nanowire synthesis and photovoltaic application. Japanese Journal of Applied Physics, 2017, 56, 085201.	1.5	12
41	Hot Electron Excitation from Titanium Nitride Using Visible Light. ACS Photonics, 2016, 3, 1552-1557.	6.6	98
42	Growth and doping control of Ge/Si and Si/Ge core-shell nanowires. , 2016, , .		0
43	Solution derived p-ZnO/n-Si nanowire heterojunctions for photodetection. Chemical Physics Letters, 2016, 658, 158-161.	2.6	20
44	Metal-catalyzed electroless etching and nanoimprinting silicon nanowire-based solar cells: Silicon nanowire defect reduction and efficiency enhancement by two-step H ₂ annealing. Japanese Journal of Applied Physics, 2016, 55, 065001.	1.5	15
45	Porous plasmonic nanocomposites for SERS substrates fabricated by two-step laser method. Journal of Alloys and Compounds, 2016, 665, 282-287.	5.5	26
46	Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates. Applied Physics Letters, 2015, 107, 133102.	3.3	6
47	Bonding and electronic states of boron in silicon nanowires characterized by an infrared synchrotron radiation beam. Nanoscale, 2015, 7, 7246-7251.	5.6	10
48	Clear Experimental Demonstration of Hole Gas Accumulation in Ge/Si Core–Shell Nanowires. ACS Nano, 2015, 9, 12182-12188.	14.6	33
49	Vertically Aligned Ge Nanowires on Flexible Plastic Films Synthesized by (111)-Oriented Ge Seeded Vapor–Liquid–Solid Growth. ACS Applied Materials & Interfaces, 2015, 7, 18120-18124.	8.0	21
50	Ultrathin GeSn p-channel MOSFETs grown directly on Si(111) substrate using solid phase epitaxy. Japanese Journal of Applied Physics, 2015, 54, 04DA07.	1.5	14
51	Electron mobility improvement by in situ annealing before deposition of HfO ₂ gate dielectric with equivalent oxide thickness of sub-1.0 nm in In _{0.53} Ga _{0.47} As n-type metal–insulator–semiconductor field-effect transistor. Applied Physics Express, 2014, 7, 061202.	2.4	0
52	Self-limiting growth of ultrathin Ga ₂ O ₃ for the passivation of Al ₂ O ₃ O ₃ /InGaAs interfaces. Applied Physics Express, 2014, 7, 011201.	2.4	22
53	Impact of Fermi level pinning inside conduction band on electron mobility in InGaAs metal-oxide-semiconductor field-effect transistors. Applied Physics Letters, 2013, 103, .	3.3	27

54 Energetic favorite of quantum dot formation in ring-shaped InP quantum-dot molecules. , 2013, , .

#	Article	IF	CITATIONS
55	Ultrathin layer transfer technology for post-Si semiconductors. Microelectronic Engineering, 2013, 109, 133-136.	2.4	24
56	3D integration of high mobility InGaAs nFETs and Ge pFETs for ultra low power and high performance CMOS. , 2013, , .		3
57	High electron mobility triangular InGaAs-OI nMOSFETs with (111)B side surfaces formed by MOVPE growth on narrow fin structures. , 2013, , .		7
58	Impact of Fermi Level Pinning Due to Interface Traps Inside the Conduction Band on the Inversion-Layer Mobility in \$hbox{In}_{x}hbox{Ga}_{1 - x}hbox{As}\$ Metal–Oxide–Semiconductor Field Effect Transistors. IEEE Transactions on Device and Materials Reliability, 2013, 13, 456-462.	2.0	25
59	Tensile-Strained GeSn Metal–Oxide–Semiconductor Field-Effect Transistor Devices on Si(111) Using Solid Phase Epitaxy. Applied Physics Express, 2013, 6, 101301.	2.4	40
60	Controlling Anion Composition at Metal–Insulator–Semiconductor Interfaces on III–V Channels by Plasma Processing. Japanese Journal of Applied Physics, 2012, 51, 065701.	1.5	2
61	High mobility p-n junction-less InGaAs-OI tri-gate nMOSFETs with metal source/drain for ultra-low-power CMOS applications. , 2012, , .		5
62	1-nm-capacitance-equivalent-thickness HfO2/Al2O3/InGaAs metal-oxide-semiconductor structure with low interface trap density and low gate leakage current density. Applied Physics Letters, 2012, 100, .	3.3	146
63	Initial Processes of Atomic Layer Deposition of Al2O3 on InGaAs: Interface Formation Mechanisms and Impact on Metal-Insulator-Semiconductor Device Performance. Materials, 2012, 5, 404-414.	2.9	18
64	InP ring-shaped quantum-dot molecules grown by droplet molecular beam epitaxy. Journal of Crystal Growth, 2011, 323, 275-278.	1.5	9
65	Transformation of concentric quantum double rings to single quantum rings with squarelike nanoholes on GaAs(0 0 1) by droplet epitaxy. Journal of Crystal Growth, 2011, 323, 271-274.	1.5	5
66	Impact of Fermi level pinning inside conduction band on electron mobility of In <inf>x</inf> Ga <inf>1−x</inf> As MOSFETs and mobility enhancement by pinning modulation. , 2011, , .		23
67	Growth and Characterization of InP Ringlike Quantum-Dot Molecules Grown by Solid-Source Molecular Beam Epitaxy. Journal of Nanoscience and Nanotechnology, 2010, 10, 7291-7294.	0.9	2
68	Influence of crystallization temperature on InP ring-shaped quantum-dot molecules grown by droplet epitaxy. Microelectronic Engineering, 2010, 87, 1416-1419.	2.4	8
69	Fabrication of Self-Assembled InGaAs Squarelike Nanoholes on GaAs(001) by Droplet Epitaxy. Japanese Journal of Applied Physics, 2010, 49, 04DH09.	1.5	3
70	Quadra-quantum dots grown on quantum rings having square-shaped holes: Basic nanostructure for quantum dot cellular automata application. Microelectronic Engineering, 2009, 86, 853-856.	2.4	20
71	In-droplet-induced formation of InP nanostructures by solid-source molecular-beam epitaxy. Microelectronic Engineering, 2007, 84, 1548-1551.	2.4	8