Bruce H Lipshutz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1972360/publications.pdf Version: 2024-02-01

194 papers	15,139 citations	¹⁰³⁷³ 72 h-index	23514 111 g-index
210	210	210	9279
all docs	docs citations	times ranked	citing authors

RDUCE H LIDSHUTZ

#	Article	IF	CITATIONS
1	CuH-Catalyzed Reactions. Chemical Reviews, 2008, 108, 2916-2927.	23.0	602
2	TPGS-750-M: A Second-Generation Amphiphile for Metal-Catalyzed Cross-Couplings in Water at Room Temperature. Journal of Organic Chemistry, 2011, 76, 4379-4391.	1.7	378
3	Heterogeneous Copper-in-Charcoal-Catalyzed Click Chemistry. Angewandte Chemie - International Edition, 2006, 45, 8235-8238.	7.2	373
4	Asymmetric Hydrosilylation of Aryl Ketones Catalyzed by Copper Hydride Complexed by Nonracemic Biphenyl Bis-phosphine Ligands. Journal of the American Chemical Society, 2003, 125, 8779-8789.	6.6	297
5	The Hydrophobic Effect Applied to Organic Synthesis: Recent Synthetic Chemistry "in Water― Chemistry - A European Journal, 2018, 24, 6672-6695.	1.7	275
6	Sustainable Fe–ppm Pd nanoparticle catalysis of Suzuki-Miyaura cross-couplings in water. Science, 2015, 349, 1087-1091.	6.0	265
7	Water as the reaction medium in organic chemistry: from our worst enemy to our best friend. Chemical Science, 2021, 12, 4237-4266.	3.7	263
8	Zn-Mediated, Pd-Catalyzed Cross-Couplings in Water at Room Temperature <i>Without</i> Prior Formation of Organozinc Reagents. Journal of the American Chemical Society, 2009, 131, 15592-15593.	6.6	252
9	High-performance mussel-inspired adhesives of reduced complexity. Nature Communications, 2015, 6, 8663.	5.8	245
10	Transitioning organic synthesis from organic solvents to water. What's your E Factor?. Green Chemistry, 2014, 16, 3660-3679.	4.6	199
11	Evolution of Solvents in Organic Chemistry. ACS Sustainable Chemistry and Engineering, 2016, 4, 5838-5849.	3.2	199
12	Sonogashira Couplings of Aryl Bromides: Room Temperature, Water Only, No Copper. Organic Letters, 2008, 10, 3793-3796.	2.4	190
13	Asymmetric 1,4-Hydrosilylations of α,β-Unsaturated Esters. Journal of the American Chemical Society, 2004, 126, 8352-8353.	6.6	184
14	Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie - International Edition, 2004, 43, 2228-2230.	7.2	184
15	Room Temperature CH Activation and Cross oupling of Aryl Ureas in Water. Angewandte Chemie - International Edition, 2010, 49, 781-784.	7.2	180
16	Room-Temperature Suzukiâ~'Miyaura Couplings in Water Facilitated by Nonionic Amphiphiles. Organic Letters, 2008, 10, 1333-1336.	2.4	179
17	On the Way Towards Greener Transitionâ€Metalâ€Catalyzed Processes as Quantified by E Factors. Angewandte Chemie - International Edition, 2013, 52, 10952-10958.	7.2	173
18	Heck Couplings at Room Temperature in Nanometer Aqueous Micelles. Organic Letters, 2008, 10, 1329-1332.	2.4	171

#	Article	IF	CITATIONS
19	Olefin Cross-Metathesis Reactions at Room Temperature Using the Nonionic Amphiphile "PTSâ€ı  Just Ad Water. Organic Letters, 2008, 10, 1325-1328.	d _{2.4}	167
20	Ligand-Accelerated, Copper-Catalyzed Asymmetric Hydrosilylations of Aryl Ketones. Journal of the American Chemical Society, 2001, 123, 12917-12918.	6.6	165
21	CuH-Catalyzed Asymmetric Conjugate Reductions of Acyclic Enones. Angewandte Chemie - International Edition, 2003, 42, 4789-4792.	7.2	158
22	On the Nature of the â€~Heterogeneous' Catalyst: Nickel-on-Charcoal. Journal of Organic Chemistry, 2003, 68, 1177-1189.	1.7	156
23	Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis. Nature Communications, 2019, 10, 2169.	5.8	154
24	"Nok― A Phytosterol-Based Amphiphile Enabling Transition-Metal-Catalyzed Couplings in Water at Room Temperature. Journal of Organic Chemistry, 2014, 79, 888-900.	1.7	153
25	Introduction: Coinage Metals in Organic Synthesis. Chemical Reviews, 2008, 108, 2793-2795.	23.0	152
26	Micellar Catalysis of Suzukiâ^'Miyaura Cross-Couplings with Heteroaromatics in Water. Organic Letters, 2008, 10, 5329-5332.	2.4	149
27	Rate Enhanced Olefin Cross-Metathesis Reactions: The Copper Iodide Effect. Journal of Organic Chemistry, 2011, 76, 4697-4702.	1.7	139
28	Aerobic Oxidation in Nanomicelles of Aryl Alkynes, in Water at Room Temperature. Angewandte Chemie - International Edition, 2014, 53, 3432-3435.	7.2	139
29	HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladiumâ€Catalyzed Crossâ€Couplings in Water at Room Temperature. Angewandte Chemie - International Edition, 2016, 55, 4914-4918.	7.2	138
30	CuH in a Bottle: A Convenient Reagent for Asymmetric Hydrosilylations. Angewandte Chemie - International Edition, 2005, 44, 6345-6348.	7.2	136
31	Hydrolysis of Acetals and Ketals Using LiBF ₄ . Synthetic Communications, 1982, 12, 267-277.	1.1	135
32	Copper(I) Hydride-Catalyzed Asymmetric Hydrosilylation of Heteroaromatic Ketones. Organic Letters, 2002, 4, 4045-4048.	2.4	135
33	Manipulating Micellar Environments for Enhancing Transition Metal-Catalyzed Cross-Couplings in Water at Room Temperature. Journal of Organic Chemistry, 2011, 76, 5061-5073.	1.7	130
34	Allylic <i>Ethers</i> as Educts for Suzukiâ^'Miyaura Couplings in Water at Room Temperature. Journal of the American Chemical Society, 2009, 131, 12103-12105.	6.6	128
35	Asymmetric Synthesis of Biaryls by Intramolecular Oxidative Couplings of Cyanocuprate Intermediates. Angewandte Chemie International Edition in English, 1994, 33, 1842-1844.	4.4	125
36	Safe and Selective Nitro Group Reductions Catalyzed by Sustainable and Recyclable Fe/ppm Pd Nanoparticles in Water at Room Temperature. Angewandte Chemie - International Edition, 2016, 55, 8979-8983.	7.2	121

#	Article	IF	CITATIONS
37	Asymmetric 1,4-Reductions of Hindered β-Substituted Cycloalkenones Using Catalytic SEGPHOSâ~'Ligated CuH. Organic Letters, 2004, 6, 1273-1275.	2.4	120
38	Transforming Suzuki–Miyaura Cross-Couplings of MIDA Boronates into a Green Technology: No Organic Solvents. Journal of the American Chemical Society, 2013, 135, 17707-17710.	6.6	119
39	Small but Effective: Copper Hydride Catalyzed Synthesis of α-Hydroxyallenes. Angewandte Chemie - International Edition, 2007, 46, 1650-1653.	7.2	117
40	Stereoselective Negishi-like Couplings Between Alkenyl and Alkyl Halides in Water at Room Temperature. Organic Letters, 2010, 12, 4742-4744.	2.4	115
41	CuH-Catalyzed Enantioselective 1,2-Reductions of α,β-Unsaturated Ketones. Journal of the American Chemical Society, 2010, 132, 7852-7853.	6.6	115
42	Amide and Peptide Bond Formation in Water at Room Temperature. Organic Letters, 2015, 17, 3968-3971.	2.4	115
43	Copper-in-Charcoal (Cu/C): Heterogeneous, Copper-Catalyzed Asymmetric Hydrosilylations. Angewandte Chemie - International Edition, 2006, 45, 1259-1264.	7.2	114
44	A Short, Highly Efficient Synthesis of Coenzyme Q10. Journal of the American Chemical Society, 2002, 124, 14282-14283.	6.6	109
45	Nucleophilic Aromatic Substitution Reactions in Water Enabled by Micellar Catalysis. Organic Letters, 2015, 17, 4734-4737.	2.4	109
46	When Does Organic Chemistry Follow Nature's Lead and "Make the Switch�. Journal of Organic Chemistry, 2017, 82, 2806-2816.	1.7	108
47	Copper-in-Charcoal (Cu/C) Promoted Diaryl Ether Formationâ€. Organic Letters, 2007, 9, 1089-1092.	2.4	106
48	Total synthesis of (-)-N-methylmaysenine. Journal of the American Chemical Society, 1980, 102, 1439-1441.	6.6	104
49	Chemoselective Reductions of Nitroaromatics in Water at Room Temperature. Organic Letters, 2014, 16, 98-101.	2.4	104
50	Cross-couplings between benzylic and aryl halides "on water― synthesis of diarylmethanes. Chemical Communications, 2010, 46, 562-564.	2.2	102
51	Copper + Nickel-in-Charcoal (Cuâ^'Ni/C): A Bimetallic, Heterogeneous Catalyst for Cross-Couplings. Organic Letters, 2008, 10, 4279-4282.	2.4	100
52	"Designer"-Surfactant-Enabled Cross-Couplings in at Room Temperature. Aldrichimica Acta, 2012, 45, 3-16.	4.0	98
53	Synthesis of Activated Alkenylboronates from Acetylenic Esters by CuH atalyzed 1,2â€Addition/Transmetalation. Angewandte Chemie - International Edition, 2008, 47, 10183-10186.	7.2	95
54	CuH-Catalyzed Enantioselective Intramolecular Reductive Aldol Reactions Generating Three New Contiguous Asymmetric Stereocenters. Journal of the American Chemical Society, 2008, 130, 14378-14379.	6.6	95

#	Article	IF	CITATIONS
55	Nanonickelâ€Catalyzed Suzuki–Miyaura Crossâ€Couplings in Water. Angewandte Chemie - International Edition, 2015, 54, 11994-11998.	7.2	94
56	Effects of Co-solvents on Reactions Run under Micellar Catalysis Conditions. Organic Letters, 2017, 19, 194-197.	2.4	94
57	Asymmetric Gold atalyzed Lactonizations in Water at Room Temperature. Angewandte Chemie - International Edition, 2014, 53, 10658-10662.	7.2	93
58	Synthetic chemistry in a water world. New rules ripe for discovery. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 1-8.	3.2	91
59	Chemistry Takes a Bath: Reactions in Aqueous Media. Journal of Organic Chemistry, 2018, 83, 7319-7322.	1.7	90
60	PQS: A New Platform for Micellar Catalysis. RCM Reactions in Water, with Catalyst Recycling. Organic Letters, 2009, 11, 705-708.	2.4	89
61	Leveraging the Micellar Effect: Gold-Catalyzed Dehydrative Cyclizations in Water at Room Temperature. Organic Letters, 2014, 16, 724-726.	2.4	89
62	Organocatalysis in Water at Room Temperature with <i>In-Flask</i> Catalyst Recycling. Organic Letters, 2012, 14, 422-425.	2.4	86
63	A Palladium Nanoparticle–Nanomicelle Combination for the Stereoselective Semihydrogenation of Alkynes in Water at Room Temperature. Angewandte Chemie - International Edition, 2014, 53, 14051-14054.	7.2	86
64	PQS-enabled visible-light iridium photoredox catalysis in water at room temperature. Green Chemistry, 2018, 20, 1233-1237.	4.6	86
65	Chiral Silanes via Asymmetric Hydrosilylation with Catalytic CuH. Organic Letters, 2006, 8, 1963-1966.	2.4	85
66	Aminations of Aryl Bromides in Water at Room Temperature. Advanced Synthesis and Catalysis, 2009, 351, 1717-1721.	2.1	81
67	Organozinc Chemistry Enabled by Micellar Catalysis. Palladium-Catalyzed Cross-Couplings between Alkyl and Aryl <i>Bromides</i> in Water at Room Temperature. Organometallics, 2011, 30, 6090-6097.	1.1	80
68	Gold Catalysis in Micellar Systems. Angewandte Chemie - International Edition, 2011, 50, 7820-7823.	7.2	80
69	Simplification of the Mitsunobu Reaction. Di-p-chlorobenzyl Azodicarboxylate:  A New Azodicarboxylate. Organic Letters, 2006, 8, 5069-5072.	2.4	79
70	Amination of Allylic Alcohols in Water at Room Temperature. Organic Letters, 2009, 11, 2377-2379.	2.4	78
71	Sonogashira Couplings Catalyzed by Fe Nanoparticles Containing ppm Levels of Reusable Pd, under Mild Aqueous Micellar Conditions. ACS Catalysis, 2019, 9, 2423-2431.	5.5	78
72	Structure of Nanoparticles Derived from Designer Surfactant TPCSâ€750â€M in Water, As Used in Organic Synthesis. Chemistry - A European Journal, 2018, 24, 6778-6786.	1.7	76

#	Article	IF	CITATIONS
73	Synthesis and Characterization of Isomeric Vinyl-1,2,3-triazole Materials by Azideâ^'Alkyne Click Chemistry. Macromolecules, 2009, 42, 6068-6074.	2.2	74
74	Stille couplings in water at room temperature. Green Chemistry, 2013, 15, 105-109.	4.6	72
75	Tweaking Copper Hydride (CuH) for Synthetic Gain. A Practical, One-Pot Conversion of Dialkyl Ketones to Reduced Trialkylsilyl Ether Derivatives. Organic Letters, 2003, 5, 3085-3088.	2.4	71
76	Nonracemic Diarylmethanols From CuH-Catalyzed Hydrosilylation of Diaryl Ketones. Organic Letters, 2008, 10, 4187-4190.	2.4	71
77	Applications of Asymmetric Hydrosilylations Mediated by Catalytic (DTBM-SEGPHOS)CuH. Organic Letters, 2006, 8, 2969-2972.	2.4	70
78	Trifluoromethylation of heterocycles in water at room temperature. Green Chemistry, 2014, 16, 1097-1100.	4.6	70
79	"On water―sp3–sp2 cross-couplings between benzylic and alkenyl halides. Chemical Communications, 2011, 47, 5717.	2.2	67
80	Total Synthesis of Piericidin A1. Application of a Modified Negishi Carboalumination-Nickel-Catalyzed Cross-Coupling. Journal of the American Chemical Society, 2009, 131, 1396-1397.	6.6	66
81	Regioselective reductions of $\hat{1}^2, \hat{1}^2$ -disubstituted enones catalyzed by nonracemically ligated copper hydride. Tetrahedron, 2012, 68, 3410-3416.	1.0	64
82	Sustainable HandaPhos- <i>ppm</i> Palladium Technology for Copper-Free Sonogashira Couplings in Water under Mild Conditions. Organic Letters, 2018, 20, 542-545.	2.4	63
83	Synergistic effects in Fe nanoparticles doped with ppm levels of (Pd + Ni). A new catalyst for sustainable nitro group reductions. Green Chemistry, 2018, 20, 130-135.	4.6	63
84	An Improved Synthesis of the "Miracle Nutrient―Coenzyme Q10. Organic Letters, 2005, 7, 4095-4097.	2.4	60
85	Câ^'C Bond Formation Catalyzed Heterogeneously by Nickel-on-Graphite (Ni/C _g). Organic Letters, 2008, 10, 697-700.	2.4	60
86	Synergistic and Selective Copper/ppm Pd-Catalyzed Suzuki–Miyaura Couplings: In Water, Mild Conditions, with Recycling. ACS Catalysis, 2016, 6, 8179-8183.	5.5	60
87	An Electrospray Ionization Mass Spectrometry Study of the Aggregation States of Organocopper Complexes in Solution. Organometallics, 1999, 18, 1571-1574.	1.1	59
88	PQS-2: ring-closing- and cross-metathesis reactions on lipophilic substrates; in water only at room temperature, with in-flask catalyst recycling. Tetrahedron, 2010, 66, 1057-1063.	1.0	59
89	Pd-Catalyzed Synthesis of Allylic Silanes from Allylic Ethers. Organic Letters, 2010, 12, 28-31.	2.4	59
90	Total Synthesis of (+)-Korupensamine B via an Atropselective Intermolecular Biaryl Coupling. Journal of the American Chemical Society, 2010, 132, 14021-14023.	6.6	59

#	Article	IF	CITATIONS
91	A Stereospecific, Intermolecular Biaryl-Coupling Approach to Korupensamine A En Route to the Michellamines. Angewandte Chemie - International Edition, 1999, 38, 3530-3533.	7.2	58
92	C–C Bond Formation via Copper-Catalyzed Conjugate Addition Reactions to Enones in Water at Room Temperature. Journal of the American Chemical Society, 2012, 134, 19985-19988.	6.6	58
93	Ligand-Free, Palladium-Catalyzed Dihydrogen Generation from TMDS: Dehalogenation of Aryl Halides on Water. Organic Letters, 2015, 17, 1122-1125.	2.4	58
94	Water-Sculpting of a Heterogeneous Nanoparticle Precatalyst for Mizoroki–Heck Couplings under Aqueous Micellar Catalysis Conditions. Journal of the American Chemical Society, 2021, 143, 3373-3382.	6.6	58
95	Microwave-Assisted Heterogeneous Cross-Coupling Reactions Catalyzed by Nickel-in-Charcoal (Ni/C). Chemistry - an Asian Journal, 2006, 1, 417-429.	1.7	56
96	A new, <i>substituted</i> palladacycle forÂppm level Pd-catalyzed Suzuki–Miyaura cross couplings in water. Chemical Science, 2019, 10, 8825-8831.	3.7	56
97	Copper-Catalyzed Reductive Alkylations of Enones: A Novel Transmetalation Protocol. Angewandte Chemie - International Edition, 2002, 41, 4580-4582.	7.2	55
98	Carbonyl Iron Powder: A Reagent for Nitro Group Reductions under Aqueous Micellar Catalysis Conditions. Organic Letters, 2017, 19, 6518-6521.	2.4	54
99	Downsizing Copper in Modern Cuprate Couplings. Accounts of Chemical Research, 1997, 30, 277-282.	7.6	52
100	A Micellar Catalysis Strategy for Suzuki–Miyaura Cross-Couplings of 2-Pyridyl MIDA Boronates: <i>No Copper</i> , in Water, Very Mild Conditions. ACS Catalysis, 2017, 7, 8331-8337.	5.5	52
101	ppm Pd-catalyzed, Cu-free Sonogashira couplings in water using commercially available catalyst precursors. Chemical Science, 2019, 10, 3481-3485.	3.7	52
102	EvanPhos: a ligand for ppm level Pd-catalyzed Suzuki–Miyaura couplings in either organic solvent or water. Green Chemistry, 2018, 20, 3436-3443.	4.6	51
103	Tandem deprotection/coupling for peptide synthesis in water at room temperature. Green Chemistry, 2017, 19, 4263-4267.	4.6	50
104	Heterogeneous Catalysis with Nickel-on-Graphite (Ni/Cg): Reduction of Aryl Tosylates and Mesylates. Angewandte Chemie - International Edition, 2006, 45, 800-803.	7.2	49
105	(NHC)CuH-Catalyzed Entry to Allenes via Propargylic Carbonate SN2′-Reductions. Organic Letters, 2009, 11, 5010-5012.	2.4	48
106	Controlling Regiochemistry in Negishi Carboaluminations. Fine Tuning the Ligand on Zirconium. Journal of the American Chemical Society, 2006, 128, 15396-15398.	6.6	47
107	Surfactant Technology: With New Rules, Designing New Sequences Is Required!. Organic Process Research and Development, 2020, 24, 841-849.	1.3	47
108	Sustainable and Scalable Fe/ppm Pd Nanoparticle Nitro Group Reductions in Water at Room Temperature. Organic Process Research and Development, 2017, 21, 247-252.	1.3	46

#	Article	IF	CITATIONS
109	SustainableÂppm level palladium-catalyzed aminations in nanoreactors under mild, aqueous conditions. Chemical Science, 2019, 10, 10556-10561.	3.7	46
110	Scavenging and Reclaiming Phosphines Associated with Group 10 Metal-Mediated Couplings. Organic Letters, 2004, 6, 2305-2308.	2.4	44
111	Micellar catalysis-enabled sustainableÂppm Au-catalyzed reactions in water at room temperature. Chemical Science, 2017, 8, 6354-6358.	3.7	44
112	MC-1. A "designer―surfactant engineered for peptide synthesis in water at room temperature. Green Chemistry, 2019, 21, 2610-2614.	4.6	43
113	Aminations of allylic phenyl ethers via micellar catalysis at room temperature in water. Chemical Communications, 2009, , 6472.	2.2	42
114	Dehalogenation of functionalized alkyl halides in water at room temperature. Green Chemistry, 2015, 17, 893-897.	4.6	42
115	<i>N</i> , <i>C</i> -Disubstituted Biarylpalladacycles as Precatalysts for ppm Pd-Catalyzed Cross Couplings in Water under Mild Conditions. ACS Catalysis, 2019, 9, 11647-11657.	5.5	42
116	Installation of protected ammonia equivalents onto aromatic & heteroaromatic rings in water enabled by micellar catalysis. Green Chemistry, 2014, 16, 1480.	4.6	41
117	Fe/ppm Cu nanoparticles as a recyclable catalyst for click reactions in water at room temperature. Green Chemistry, 2017, 19, 2506-2509.	4.6	41
118	Fe-Catalyzed Reductive Couplings of Terminal (Hetero)Aryl Alkenes and Alkyl Halides under Aqueous Micellar Conditions. Journal of the American Chemical Society, 2019, 141, 17117-17124.	6.6	41
119	A New Bromo Trienyne:Â Synthesis ofall-E, Conjugated Tetra-, Penta-, and Hexaenes Common to Oxo Polyene Macrolide Antibiotics. Journal of Organic Chemistry, 1998, 63, 6092-6093.	1.7	40
120	S _N Ar Reactions in Aqueous Nanomicelles: From Milligrams to Grams with No Dipolar Aprotic Solvents Needed. Organic Process Research and Development, 2017, 21, 218-221.	1.3	40
121	Synthesis of Functionalized [3], [4], [5] and [6]Dendralenes through Palladiumâ€Catalyzed Crossâ€Couplings of Substituted Allenoates. Angewandte Chemie - International Edition, 2017, 56, 847-850.	7.2	40
122	Copper(I)-mediated 1,2- and 1,4-Reductions. , 0, , 167-187.		38
123	Kumada–Grignard-type biaryl couplings on water. Nature Communications, 2015, 6, 7401.	5.8	38
124	Synthetic chemistry in water: applications to peptide synthesis and nitro-group reductions. Nature Protocols, 2019, 14, 1108-1129.	5.5	38
125	Asymmetrische Synthese von Biarylen durch intramolekulare oxidative Kupplung von Cyanocupratâ€Zwischenstufen. Angewandte Chemie, 1994, 106, 1962-1964.	1.6	37
126	Triisopropylsilyloxycarbonyl ("Tsocâ€): A New Protecting Group for 1°and 2°Amines. Journal of Organic Chemistry, 1999, 64, 3792-3793.	1.7	37

#	Article	IF	CITATIONS
127	Catalysis in the Service of Green Chemistry: Nobel Prize-Winning Palladium-Catalysed Cross-Couplings, Run in Water at Room Temperature. Platinum Metals Review, 2012, 56, 62-74.	1.5	37
128	Rhodiumâ€Catalyzed Asymmetric 1,4â€Additions, in Water at Room Temperature, with Inâ€Flask Catalyst Recycling. Advanced Synthesis and Catalysis, 2012, 354, 3175-3179.	2.1	37
129	Enhancing Regiocontrol in Carboaluminations of Terminal Alkynes. Application to the One-Pot Synthesis of Coenzyme Q10. Organic Letters, 2007, 9, 3737-3740.	2.4	36
130	Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies. Beilstein Journal of Organic Chemistry, 2016, 12, 1040-1064.	1.3	36
131	The †Nano-to-Nano' Effect Applied to Organic Synthesis in Water. Johnson Matthey Technology Review, 2017, 61, 196-202.	0.5	36
132	Coolade. A Lowâ€Foaming Surfactant for Organic Synthesis in Water. ChemSusChem, 2019, 12, 3159-3165.	3.6	36
133	<i>>B</i> -Alkyl sp ³ –sp ² Suzuki–Miyaura Couplings under Mild Aqueous Micellar Conditions. Organic Letters, 2018, 20, 2902-2905.	2.4	35
134	Chemoselective Reductive Aminations in Aqueous Nanoreactors Using Parts per Million Level Pd/C Catalysis. Organic Letters, 2020, 22, 6324-6329.	2.4	35
135	Nanomicelle-enhanced, asymmetric ERED-catalyzed reductions of activated olefins. Applications to 1-pot chemo- and bio-catalysis sequences in water. Chemical Communications, 2021, 57, 11847-11850.	2.2	35
136	Copper-Catalyzed Oxidative Cleavage of Electron-Rich Olefins in Water at Room Temperature. Organic Letters, 2018, 20, 5094-5097.	2.4	34
137	An environmentally responsible 3-pot, 5-step synthesis of the antitumor agent sonidegib using ppm levels of Pd catalysis in water. Green Chemistry, 2019, 21, 6258-6262.	4.6	33
138	A Sustainable 1-Pot, 3-Step Synthesis of Boscalid Using Part per Million Level Pd Catalysis in Water. Organic Process Research and Development, 2020, 24, 101-105.	1.3	33
139	Efficient Scavenging of Ph3P and Ph3PO with High-Loading Merrifield Resin. Organic Letters, 2001, 3, 1869-1871.	2.4	32
140	Safe, Scalable, Inexpensive, and Mild Nickelâ€Catalyzed Migitaâ€Like Câ^'S Cross ouplings in Recyclable Water. Angewandte Chemie - International Edition, 2021, 60, 3708-3713.	7.2	32
141	Lipase-catalyzed esterification in water enabled by nanomicelles. Applications to 1-pot multi-step sequences. Chemical Science, 2022, 13, 1440-1445.	3.7	32
142	Mild and Robust Stille Reactions in Water using Parts Per Million Levels of a Triphenylphosphineâ€Based Palladacycle. Angewandte Chemie - International Edition, 2021, 60, 4158-4163.	7.2	31
143	Asymmetric CuH-Catalyzed Hydrosilylations en Route to the C-9 Epimer of Amphidinoketide Ι. Organic Letters, 2007, 9, 4713-4716.	2.4	30
144	Environmentally responsible, safe, and chemoselective catalytic hydrogenation of olefins: ppm level Pd catalysis in recyclable water at room temperature. Green Chemistry, 2020, 22, 6055-6061.	4.6	30

#	Article	IF	CITATIONS
145	N ₂ Phos – an easily made, highly effective ligand designed for ppm level Pd-catalyzed Suzuki–Miyaura cross couplings in water. Chemical Science, 2020, 11, 5205-5212.	3.7	29
146	"Click―and Olefin Metathesis Chemistry in Water at Room Temperature Enabled by Biodegradable Micelles. Journal of Chemical Education, 2013, 90, 1514-1517.	1.1	27
147	Safe and Selective Nitro Group Reductions Catalyzed by Sustainable and Recyclable Fe/ppm Pd Nanoparticles in Water at Room Temperature. Angewandte Chemie, 2016, 128, 9125-9129.	1.6	27
148	New Conjunctive Reagents as Cross-Coupling Partners En Route to Retinoid-like Polyenes. Organic Letters, 2005, 7, 4561-4564.	2.4	26
149	Catalyst: Imagine Doing Chemistry at No Cost $\hat{a} \in ^{l}_{l}$ to the Environment!. CheM, 2018, 4, 2004-2007.	5.8	26
150	Deprotection of Homoallyl (^h Allyl) Derivatives of Phenols, Alcohols, Acids, and Amines. Journal of Organic Chemistry, 2009, 74, 2854-2857.	1.7	25
151	Safe, Scalable, Inexpensive, and Mild Nickelâ€Catalyzed Migitaâ€Like Câ^'S Crossâ€Couplings in Recyclable Water. Angewandte Chemie, 2021, 133, 3752-3757.	1.6	25
152	Continuous flow Suzuki–Miyaura couplings in water under micellar conditions in a CSTR cascade catalyzed by Fe/ppm Pd nanoparticles. Green Chemistry, 2020, 22, 3441-3444.	4.6	24
153	Sustainable and Cost-Effective Suzuki–Miyaura Couplings toward the Key Biaryl Subunits of Arylex and Rinskor Active. Organic Letters, 2020, 22, 4823-4827.	2.4	23
154	Sustainable Palladium-Catalyzed Tsuji–Trost Reactions Enabled by Aqueous Micellar Catalysis. Organic Letters, 2020, 22, 4949-4954.	2.4	23
155	Miyaura Borylations of Aryl Bromides in Water at Room Temperature. Israel Journal of Chemistry, 2010, 50, 691-695.	1.0	22
156	Synthesis of Functionalized 1,3-Butadienes via Pd-Catalyzed Cross-Couplings of Substituted Allenic Esters in Water at Room Temperature. Organic Letters, 2018, 20, 4719-4722.	2.4	22
157	Synergistic Effects of ppm Levels of Palladium on Natural Clinochlore for Reduction of Nitroarenes. ChemSusChem, 2019, 12, 4240-4248.	3.6	22
158	α-Arylation of (hetero)aryl ketones in aqueous surfactant media. Green Chemistry, 2021, 23, 4858-4865.	4.6	22
159	Modified Routes to the "Designer―Surfactant PQS. Journal of Organic Chemistry, 2012, 77, 3143-3148.	1.7	21
160	Lateâ€stage Pdâ€catalyzed Cyanations of Aryl/Heteroaryl Halides in Aqueous Micellar Media. ChemCatChem, 2021, 13, 212-216.	1.8	21
161	HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladium-Catalyzed Cross-Couplings in Water at Room Temperature. Angewandte Chemie, 2016, 128, 4998-5002.	1.6	20
162	One-Pot Synthesis of Indoles and Pyrazoles via Pd-Catalyzed Couplings/Cyclizations Enabled by Aqueous Micellar Catalysis. Organic Letters, 2020, 22, 6543-6546.	2.4	20

#	Article	IF	CITATIONS
163	High Turnover Pd/C Catalyst for Nitro Group Reductions in Water. One-Pot Sequences and Syntheses of Pharmaceutical Intermediates. Organic Letters, 2021, 23, 8114-8118.	2.4	20
164	Recent advances in Cu-catalyzed C(sp ³)–Si and C(sp ³)–B bond formation. Beilstein Journal of Organic Chemistry, 2020, 16, 691-737.	1.3	17
165	Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment. Green Chemistry, 2021, 23, 7724-7730.	4.6	17
166	"TPG-lite― A new, simplified "designer―surfactant for general use in synthesis under micellar catalysis conditions in recyclable water. Tetrahedron, 2021, 87, 132090.	1.0	17
167	Synthesis of Functionalized [3], [4], [5] and [6]Dendralenes through Palladiumâ€Catalyzed Crossâ€Couplings of Substituted Allenoates. Angewandte Chemie, 2017, 129, 865-868.	1.6	15
168	llluminating a Path4914. Copyright 2016 Wiley for Organic Synthesis Towards Sustainability. No One Said It Would Be Easy…. Synlett, 2021, 32, 1588-1605.	1.0	15
169	Hydrozirconation and Further Transmetalation Reactions. , 0, , 110-148.		13
170	Dehydration of primary amides to nitriles in water. Late-stage functionalization and 1-pot multistep chemoenzymatic processes under micellar catalysis conditions. Green Chemistry, 2022, 24, 2853-2858.	4.6	13
171	Reductions of aryl bromides in water at room temperature. Tetrahedron Letters, 2015, 56, 3608-3611.	0.7	12
172	Copper-Catalyzed Asymmetric Reductions of Aryl/Heteroaryl Ketones under Mild Aqueous Micellar Conditions. Organic Letters, 2021, 23, 3282-3286.	2.4	11
173	An environmentally responsible synthesis of the antitumor agent lapatinib (Tykerb). Green Chemistry, 2022, 24, 3640-3643.	4.6	11
174	Selective Cleavage of Cbz-Protected Amines. Organic Letters, 2001, 3, 4145-4148.	2.4	10
175	Atroposelective Total Synthesis of the Fourfold ortho ‣ubstituted Naphthyltetrahydroisoquinoline Biaryl O , N â€Dimethylhamatine. Chemistry - A European Journal, 2019, 25, 14237-14245.	1.7	10
176	Nickel Nanoparticle Catalyzed Mono―and Diâ€Reductions of <i>gem</i> â€Dibromocyclopropanes Under Mild, Aqueous Micellar Conditions. Angewandte Chemie - International Edition, 2020, 59, 17587-17593.	7.2	10
177	Asymmetric CuH-Catalyzed 1,4-Reductions in Water at Room Temperature. Synlett, 2010, 2010, 2041-2044.	1.0	9
178	Control of Chemo-, Regio-, and Enantioselectivity in Copper Hydride Reductions of Morita–Baylis–Hillman Adducts. Organic Letters, 2017, 19, 328-331.	2.4	9
179	Environmentally Responsible and Cost-Effective Synthesis of the Antimalarial Drug Pyronaridine. Organic Letters, 2022, 24, 3342-3346.	2.4	9
180	Organometallic Processes in Water. Topics in Organometallic Chemistry, 2018, , 199-216.	0.7	8

#	Article	IF	CITATIONS
181	A Randomized, Triple-Blind, Comparator-Controlled Parallel Study Investigating the Pharmacokinetics of Cannabidiol and Tetrahydrocannabinol in a Novel Delivery System, Solutech, in Association with Cannabis Use History. Cannabis and Cannabinoid Research, 2022, 7, 777-789.	1.5	8
182	Discovery-Based SNAr Experiment in Water Using Micellar Catalysis. Journal of Chemical Education, 2019, 96, 2668-2671.	1,1	7
183	Selective Deprotection of the Diphenylmethylsilyl (DPMS) Hydroxyl Protecting Group under Environmentally Responsible, Aqueous Conditions. ChemCatChem, 2019, 11, 5743-5747.	1.8	6
184	Bisulfite Addition Compounds as Substrates for Reductive Aminations in Water. Organic Letters, 2021, 23, 7205-7208.	2.4	6
185	Sustainable routes to amines in recyclable water using ppm Pd catalysis. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100493.	3.2	6
186	New technologies in catalysis using base metals. Pure and Applied Chemistry, 2006, 78, 377-384.	0.9	5
187	Cuprate-catalyzedThree-Component Couplings of Functionalized Organozinc Reagents. Journal of the Chinese Chemical Society, 1997, 44, 1-4.	0.8	4
188	Nickel Nanoparticle Catalyzed Mono―and Diâ€Reductions of gem â€Dibromocyclopropanes Under Mild, Aqueous Micellar Conditions. Angewandte Chemie, 2020, 132, 17740-17746.	1.6	4
189	Synthesis of Conjugated Oligomers and Polymers via Palladium-Catalyzed Cross-Coupling: Synthesis of Conjugated Oligomers for Applications in Biological and Medicinal Areas. , 0, , 807-823.		2
190	Earth-Abundant and Precious Metal Nanoparticle Catalysis. Topics in Organometallic Chemistry, 2020, , 77-129.	0.7	2
191	Mild and Robust Stille Reactions in Water using Parts Per Million Levels of a Triphenylphosphineâ€Based Palladacycle. Angewandte Chemie, 2021, 133, 4204-4209.	1.6	2
192	Devising An Especially Efficient Route to the â€~Miracle' Nutrient Coenzyme Q10. Strategies and Tactics in Organic Synthesis, 2004, 4, 269-292.	0.1	1
193	Frontispiece: The Hydrophobic Effect Applied to Organic Synthesis: Recent Synthetic Chemistry "in Water― Chemistry - A European Journal, 2018, 24, .	1.7	1
194	Cross-Coupling Reactions. , 2005, , 127-153.		0