Jiou Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1971955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 2015, 525, 56-61.	13.7	835
2	RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron, 2013, 80, 415-428.	3.8	785
3	C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 2014, 507, 195-200.	13.7	779
4	Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Human Molecular Genetics, 2003, 12, 2753-2764.	1.4	279
5	Fibrillar Inclusions and Motor Neuron Degeneration in Transgenic Mice Expressing Superoxide Dismutase 1 with a Disrupted Copper-Binding Site. Neurobiology of Disease, 2002, 10, 128-138.	2.1	223
6	High Molecular Weight Complexes of Mutant Superoxide Dismutase 1: Age-Dependent and Tissue-Specific Accumulation. Neurobiology of Disease, 2002, 9, 139-148.	2.1	189
7	An ALS-Linked Mutant SOD1 Produces a Locomotor Defect Associated with Aggregation and Synaptic Dysfunction When Expressed in Neurons of Caenorhabditis elegans. PLoS Genetics, 2009, 5, e1000350.	1.5	175
8	Loss of C9orf72 Enhances Autophagic Activity via Deregulated mTOR and TFEB Signaling. PLoS Genetics, 2016, 12, e1006443.	1.5	154
9	Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1392-1397.	3.3	128
10	TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling. Human Molecular Genetics, 2011, 20, 1952-1965.	1.4	104
11	Ubiquilin 2 modulates ALS/FTD-linked FUS–RNA complex dynamics and stress granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11485-E11494.	3.3	100
12	A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism. Acta Neuropathologica, 2018, 135, 427-443.	3.9	98
13	Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiology of Disease, 2005, 20, 943-952.	2.1	95
14	Autophagy as a common pathway in amyotrophic lateral sclerosis. Neuroscience Letters, 2019, 697, 34-48.	1.0	80
15	Mapping superoxide dismutase 1 domains of non-native interaction: roles of intra- and intermolecular disulfide bonding in aggregation. Journal of Neurochemistry, 2006, 96, 1277-1288.	2.1	76
16	FUS Regulates Activity of MicroRNA-Mediated Gene Silencing. Molecular Cell, 2018, 69, 787-801.e8.	4.5	76
17	G-Quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Research, 2021, 49, 4816-4830.	6.5	76
18	C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metabolism, 2021, 33, 531-546.e9.	7.2	70

JIOU WANG

#	Article	IF	CITATIONS
19	Caenorhabditis elegans RNA-processing Protein TDP-1 Regulates Protein Homeostasis and Life Span. Journal of Biological Chemistry, 2012, 287, 8371-8382.	1.6	58
20	A C9orf72–CARM1 axis regulates lipid metabolism under glucose starvation-induced nutrient stress. Genes and Development, 2018, 32, 1380-1397.	2.7	49
21	Differential regulation of small heat shock proteins in transgenic mouse models of neurodegenerative diseases. Neurobiology of Aging, 2008, 29, 586-597.	1.5	44
22	A Helicase Unwinds Hexanucleotide Repeat RNA G-Quadruplexes and Facilitates Repeat-Associated Non-AUG Translation. Journal of the American Chemical Society, 2021, 143, 7368-7379.	6.6	43
23	RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress Response. PLoS Genetics, 2014, 10, e1004693.	1.5	40
24	G-quadruplexes offer a conserved structural motif for NONO recruitment to NEAT1 architectural IncRNA. Nucleic Acids Research, 2020, 48, 7421-7438.	6.5	39
25	Regulation of Protein Quality Control by UBE4B and LSD1 through p53-Mediated Transcription. PLoS Biology, 2015, 13, e1002114.	2.6	38
26	Systemic deregulation of autophagy upon loss of ALS- and FTD-linked C9orf72. Autophagy, 2017, 13, 1254-1255.	4.3	32
27	Nuclear export of misfolded SOD1 mediated by a normally buried NES-like sequence reduces proteotoxicity in the nucleus. ELife, 2017, 6, .	2.8	32
28	Emerging role of RNA•DNA hybrids in C9orf72-linked neurodegeneration. Cell Cycle, 2015, 14, 526-532.	1.3	26
29	Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance. Journal of Neuroscience, 2015, 35, 14286-14306.	1.7	23
30	MARK2 phosphorylates elF2Î \pm in response to proteotoxic stress. PLoS Biology, 2021, 19, e3001096.	2.6	22
31	C9orf72-dependent lysosomal functions regulate epigenetic control of autophagy and lipid metabolism. Autophagy, 2019, 15, 913-914.	4.3	21
32	USP7 regulates ALS-associated proteotoxicity and quality control through the NEDD4L–SMAD pathway. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28114-28125.	3.3	21
33	C9orf72/ALFA-1 controls TFEB/HLH-30-dependent metabolism through dynamic regulation ofÂRag GTPases. PLoS Genetics, 2020, 16, e1008738.	1.5	18
34	NDST3 deacetylates αâ€ŧubulin and suppresses Vâ€ATPase assembly and lysosomal acidification. EMBO Journal, 2021, 40, e107204.	3.5	11
35	L3MBTL1 regulates ALS/FTD-associated proteotoxicity and quality control. Nature Neuroscience, 2019, 22, 875-886.	7.1	10
36	Cell-type specific differences in promoter activity of the ALS-linked C9orf72 mouse ortholog. Scientific Reports, 2017, 7, 5685.	1.6	9

JIOU WANG

#	Article	IF	CITATIONS
37	Identification of Genes Regulating Cell Death in Staphylococcus aureus. Frontiers in Microbiology, 2019, 10, 2199.	1.5	7
38	Infection with persister forms of Staphylococcus aureus causes a persistent skin infection with more severe lesions in mice: failure to clear the infection by the current standard of care treatment. Discovery Medicine, 2019, 28, 7-16.	0.5	6
39	Effect of mutation mechanisms on variant composition and distribution in Caenorhabditis elegans. PLoS Computational Biology, 2017, 13, e1005369.	1.5	5
40	Fast genetic mapping using insertion-deletion polymorphisms in Caenorhabditis elegans. Scientific Reports, 2021, 11, 11017.	1.6	4
41	Thermotolerance of tax-2 Is Uncoupled From Life Span Extension and Influenced by Temperature During Development in C. elegans. Frontiers in Genetics, 2020, 11, 566948.	1.1	1
42	Transgenic mouse models of neurodegenerative disease. , 2004, , 533-557.		0
43	Heterochronic Phenotype Analysis of Hypodermal Seam Cells in Caenorhabditis elegans. Bio-protocol, 2019, 9, .	0.2	0
44	Identification of a novel gene argJ involved in arginine biosynthesis critical for persister formation in Staphylococcus aureus. Discovery Medicine, 2020, 29, 65-77.	0.5	0