Sabina Abdul-Hadi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1971837/sabina-abdul-hadi-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21 229 9 14 g-index

29 292 3.5 3.01 ext. papers ext. citations avg, IF L-index

#	Paper Paper	IF	Citations
21	Strong Reduction in Ge Film Reflectivity by an Overlayer of 3 nm Si Nanoparticles: Implications for Photovoltaics. <i>ACS Applied Nano Materials</i> , 2021 , 4, 4602-4614	5.6	5
20	Using Otsus Method for Image Segmentation to Determine the Particle Density, Surface Coverage and Cluster Size Distribution of 3 nm Si Nanoparticles. <i>IEEE Nanotechnology Magazine</i> , 2021 , 1-1	2.6	1
19	Modulating Surface Roughness of Low Temperature PECVD Germanium using Multilayer Drop Casting of 2.85 nm Silicon Nanoparticles 2020 ,		1
18	MOMSense: Metal-Oxide-Metal Elementary Glucose Sensor. <i>Scientific Reports</i> , 2019 , 9, 5524	4.9	22
17	Bipolar Cu/HfO/p Si Memristors by Sol-Gel Spin Coating Method and Their Application to Environmental Sensing. <i>Scientific Reports</i> , 2019 , 9, 9983	4.9	26
16	High-Density ReRAM Crossbar with Selector Device for Sneak Path Reduction 2019,		2
15	III-V/Si dual junction solar cell at scale: Manufacturing cost estimates for step-cell based technology. <i>Journal of Renewable and Sustainable Energy</i> , 2018 , 10, 015905	2.5	11
14	Effect of atomic layer deposited Al2O3:ZnO alloys on thin-film silicon photovoltaic devices. <i>Journal of Applied Physics</i> , 2017 , 122, 245103	2.5	4
13	Theoretical efficiency limit for a two-terminal multi-junction Etep-cellusing detailed balance method. <i>Journal of Applied Physics</i> , 2016 , 119, 073104	2.5	14
12	Demonstration of aluminum doped ZnO as anti-reflection coating 2016,		2
11	Multilayer antireflection coating design for GaAs0.69P0.31/Si dual-junction solar cells. <i>Solar Energy</i> , 2015 , 122, 76-86	6.8	33
10	Reducing optical and resistive losses in graded silicon-germanium buffer layers for silicon based tandem cells using step-cell design. <i>AIP Advances</i> , 2015 , 5, 057161	1.5	6
9	Theoretical efficiency limits of a 2 terminal dual junction step cell 2015 ,		3
8	Design Optimization of Single-Layer Antireflective Coating for GaAs $_{\{bf 1-\}\{bm x\}}\$ EFF Layer Antireflective Coating for GaAs $_{\{bf 1-\}\{bm x\}}\$ EFF Layer Antireflective Coating for GaAs $_{\{bf 1-\}\{bm x\}}\$ Layer Antireflective Co	437	7
7	Thin-film Si1⊠Gex HIT solar cells. <i>Solar Energy</i> , 2014 , 103, 154-159	6.8	33
6	Comparative Life Cycle Assessment (LCA) of streetlight technologies for minor roads in United Arab Emirates. <i>Energy for Sustainable Development</i> , 2013 , 17, 438-450	5.4	21
5	Effect of germanium fraction on the effective minority carrier lifetime in thin film amorphous-Si/crystalline-Si1xGex/crystalline-Si heterojunction solar cells. <i>AIP Advances</i> , 2013 , 3, 052119	9 ^{1.5}	12

LIST OF PUBLICATIONS

4	Thin film a-Si/c-Si1⊠Gex/c-Si heterojunction solar cells with Ge content up to 56% 2012 ,		4
3	a-Si/c-Si1⊠Gex/c-Si heterojunction solar cells 2011 ,		1
2	Thin Film a-Si/c-Si1-xGex/c-Si Heterojunction Solar Cells: Design and Material Quality Requirements. <i>ECS Transactions</i> , 2011 , 41, 3-14	1	20
1	Study of Polyethylene Fibers Used in Masks Via Luminescent Aerosolized Silicon Nanoparticles. <i>Silicon</i> ,1	2.4	1