Likun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1971542/publications.pdf

Version: 2024-02-01

20	1,126	14	19
papers	citations	h-index	g-index
20	20	20	2189
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nitro-oxidized carboxylated cellulose nanofiber based nanopapers and their PEM fuel cell performance. Sustainable Energy and Fuels, 2022, 6, 3669-3680.	4.9	11
2	The Role of Titania Surface Coating by Atomic Layer Deposition in Improving Osteogenic Differentiation and Hard Tissue Formation of Dental Pulp Stem Cells. Advanced Engineering Materials, 2021, 23, 2100097.	3 . 5	5
3	Improving Thermal Stability of Perovskite Solar Cells by Suppressing Ion Migration Using Copolymer Grain Encapsulation. Chemistry of Materials, 2021, 33, 6120-6135.	6.7	22
4	Combination of 3D Printing and ALD for Dentin Fabrication from Dental Pulp Stem Cell Culture. ACS Applied Bio Materials, 2021, 4, 7422-7430.	4.6	1
5	Enhancing proton exchange membrane fuel cell performance via graphene oxide surface synergy. Applied Energy, 2020, 261, 114277.	10.1	13
6	The use of low cost, abundant, homopolymers for engineering degradable polymer blends: Compatibilization of poly(lactic acid)/styrenics using poly(methyl methacrylate). Polymer, 2020, 186, 122010.	3.8	19
7	Engineering thermally and electrically conductive biodegradable polymer nanocomposites. Composites Part B: Engineering, 2020, 189, 107905.	12.0	56
8	Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate. Composites Part B: Engineering, 2020, 196, 108124.	12.0	46
9	Enhancing Chemical Stability and Suppressing Ion Migration in CH ₃ NH ₃ Pol ₃ Perovskite Solar Cells <i>via</i> Direct Backbone Attachment of Polyesters on Grain Boundaries. Chemistry of Materials, 2020, 32, 5104-5117.	6.7	64
10	Operation of proton exchange membrane (PEM) fuel cells using natural cellulose fiber membranes. Sustainable Energy and Fuels, 2019, 3, 2725-2732.	4.9	28
11	Suppression of Carbon Monoxide Poisoning in Proton Exchange Membrane Fuel Cells via Gold Nanoparticle/Titania Ultrathin Film Heterogeneous Catalysts. ACS Applied Energy Materials, 2019, 2, 3479-3487.	5.1	28
12	Engineering Styrenic Blends with Poly(lactic acid). Macromolecules, 2019, 52, 7547-7556.	4.8	19
13	An excellent OER electrocatalyst of cubic SrCoO _{3â^î} prepared by a simple F-doping strategy. Journal of Materials Chemistry A, 2019, 7, 12538-12546.	10.3	112
14	Regulating substrate mechanics to achieve odontogenic differentiation for dental pulp stem cells on TiO2 filled and unfilled polyisoprene. Acta Biomaterialia, 2019, 89, 60-72.	8.3	17
15	Electrospinning deposition of poly(acrylic acid): platinum/carbon catalyst ink to enhance polymer electrolyte membrane fuel cell performance. MRS Communications, 2019, 9, 1343-1348.	1.8	8
16	Designing Nanoplatelet Alloy/Nafion Catalytic Interface for Optimization of PEMFCs: Performance, Durability, and CO Resistance. ACS Catalysis, 2019, 9, 1446-1456.	11.2	29
17	Synthesis and characterization of iron nanoparticles on partially reduced graphene oxide as a cost-effective catalyst for polymer electrolyte membrane fuel cells. MRS Communications, 2017, 7, 166-172.	1.8	15
18	A N-, Fe- and Co-tridoped carbon nanotube/nanoporous carbon nanocomposite with synergistically enhanced activity for oxygen reduction in acidic media. Journal of Materials Chemistry A, 2015, 3, 17866-17873.	10.3	20

#	Article	lF	CITATIONS
19	Nanocomposite of N-Doped TiO ₂ Nanorods and Graphene as an Effective Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21978-21985.	8.0	76
20	Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 4095-4103.	30.8	537