

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1971241/publications.pdf Version: 2024-02-01

Bo Xu

#	Article	IF	CITATIONS
1	Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites. Journal of Analytical and Applied Pyrolysis, 2018, 134, 231-242.	5.5	124
2	Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin. Polymer Degradation and Stability, 2015, 122, 8-17.	5.8	76
3	A phosphorous-based bi-functional flame retardant for rigid polyurethane foam. Polymer Degradation and Stability, 2021, 186, 109516.	5.8	69
4	Quickly self-extinguishing flame retardant behavior of rigid polyurethane foams linked with phosphaphenanthrene groups. Composites Part B: Engineering, 2019, 175, 107186.	12.0	58
5	Synthesis of (1,4â€Methylenephenylphosphinic acid) Piperazine and Its Application as a Flame Retardant in Epoxy Thermosets. Macromolecular Materials and Engineering, 2019, 304, 1900419.	3.6	42
6	Epoxy thermoset with enhanced flame retardancy and physical-mechanical properties based on reactive phosphaphenanthrene compound. Polymer Degradation and Stability, 2020, 172, 109063.	5.8	40
7	Flame retardant and toughening behaviors of bioâ€based DOPOâ€containing curing agent in epoxy thermoset. Polymers for Advanced Technologies, 2020, 31, 461-471.	3.2	33
8	Addition flameâ€retardant effect of nonreactive phosphonate and expandable graphite in rigid polyurethane foams. Journal of Applied Polymer Science, 2018, 135, 45960.	2.6	30
9	Flame retardant application of a hypophosphite/cyclotetrasiloxane bigroup compound on polycarbonate. Journal of Applied Polymer Science, 2020, 137, 48699.	2.6	30
10	Enhancement of the intumescent flame retardant efficiency in polypropylene by synergistic charring effect of a hypophosphite/cyclotetrasiloxane bi-group compound. Polymer Degradation and Stability, 2020, 181, 109281.	5.8	30
11	Impact on flame retardancy and degradation behavior of intumescent flameâ€retardant <scp>EP</scp> composites by a hyperbranched triazineâ€based charring agent. Polymers for Advanced Technologies, 2020, 31, 3316-3327.	3.2	30
12	Biâ€phase flameâ€retardant effect of dimethyl methylphosphonate and modified ammonium polyphosphate on rigid polyurethane foam. Polymers for Advanced Technologies, 2019, 30, 2721-2728.	3.2	29
13	Flame retardancy and thermal behavior of intumescent flame-retardant EVA composites with an efficient triazine-based charring agent. Materials Research Express, 2018, 5, 045309.	1.6	27
14	Synergistic Effects of Nano-zinc Oxide on Improving the Flame Retardancy of EVA Composites with an Efficient Triazine-Based Charring Agent. Journal of Polymers and the Environment, 2019, 27, 1127-1140.	5.0	27
15	Enhancement of an organic–metallic hybrid charring agent on flame retardancy of ethylene-vinyl acetate copolymer. Royal Society Open Science, 2019, 6, 181413.	2.4	24
16	Synergistic Charring Flame-Retardant Behavior of Polyimide and Melamine Polyphosphate in Glass Fiber-Reinforced Polyamide 66. Polymers, 2019, 11, 1851.	4.5	24
17	Flame Inhibition and Charring Effect of Aromatic Polyimide and Aluminum Diethylphosphinate in Polyamide 6. Polymers, 2019, 11, 74.	4.5	23
18	Strengthen flame retardancy of epoxy thermoset by montmorillonite particles adhering phosphorus ontaining fragments. Journal of Applied Polymer Science, 2020, 137, 47500.	2.6	18

Bo Xu

#	Article	IF	CITATIONS
19	Preparation of flame retardant and conductive epoxy resin composites by incorporating functionalized multiâ€walled carbon nanotubes and graphite sheets. Polymers for Advanced Technologies, 2021, 32, 2093-2101.	3.2	17
20	Jointâ€aggregation intumescent flameâ€retardant effect of ammonium polyphosphate and charring agent in polypropylene. Polymers for Advanced Technologies, 2020, 31, 1699-1708.	3.2	15
21	Mechanical properties and flame retardancy of PLA composites containing zinc oxide and chain extender. Journal of Applied Polymer Science, 2021, 138, 50987.	2.6	15
22	Synthesis and Characterization of Aluminum 2-Carboxyethyl-Phenyl-Phosphinate and Its Flame-Retardant Application in Polyester. Polymers, 2019, 11, 1969.	4.5	14
23	Intumescent flame-retardant poly(1, 4-butylene terephthalate) with ammonium polyphosphate and a hyperbranched triazine charring-foaming agent: Flame retardancy performance and mechanisms. Journal of Fire Sciences, 2017, 35, 317-340.	2.0	12
24	Preparation and properties of PLA/PHBV/PBAT blends 3D printing filament. Materials Research Express, 2019, 6, 065401.	1.6	12
25	A novel high phosphorusâ€efficiency phosphaphenanthrene curing agent for fabricating flame retardant and toughened epoxy thermoset. Polymers for Advanced Technologies, 2022, 33, 770-781.	3.2	10
26	The effects of DOPO modified Co-based metalorganic framework on flame retardancy, stiffness and thermal stability of epoxy resin. RSC Advances, 2021, 11, 6781-6790.	3.6	8
27	Effect of two boron compounds on smokeâ€suppression and flameâ€retardant properties for rigid polyurethane foams. Polymer International, 2022, 71, 1210-1219.	3.1	7
28	Novel Amphiphilic Comb-Like Polymers: Synthesis, Characterization, and Their Properties as Viscosifying and Filtration Additives for Drilling Fluids. Journal of Macromolecular Science - Physics, 2014, 53, 1011-1026.	1.0	2