Osamu Nakagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/197051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2′,4′â€BNA/LNA with 9â€(2â€Aminoethoxy)â€1,3â€diazaâ€2â€oxophenoxazine Efficiently Forms Duplexes Enhanced Enzymatic Resistance**. Chemistry - A European Journal, 2021, 27, 2427-2438.	and Has	7
2	Crystallographic Structure of Novel Types of Ag I â€Mediated Base Pairs in Non anonical DNA Duplex Containing 2′―O ,4′―C â€Methylene Bridged Nucleic Acids. Chemistry - A European Journal, 2021, 27, 3842-3848.	3.3	4
3	Enhanced duplex- and triplex-forming ability and enzymatic resistance of oligodeoxynucleotides modified by a tricyclic thymine derivative. Organic and Biomolecular Chemistry, 2021, 19, 8063-8074.	2.8	2
4	Oligonucleotides Containing Phenoxazine Artificial Nucleobases: Triplexâ€Forming Abilities and Fluorescence Properties. ChemBioChem, 2020, 21, 860-864.	2.6	5
5	Silver(I)â€Ionâ€Mediated Cytosineâ€Containing Base Pairs: Metal Ion Specificity for Duplex Stabilization and Susceptibility toward DNA Polymerases. ChemBioChem, 2020, 21, 517-522.	2.6	12
6	Enzymatic formation of consecutive thymine–Hg ^{II} –thymine base pairs by DNA polymerases. Chemical Communications, 2020, 56, 12025-12028.	4.1	12
7	1,3,9â€Triazaâ€2â€oxophenoxazine: An Artificial Nucleobase Forming Highly Stable Selfâ€Base Pairs with Three Ag I Ions in a Duplex. Chemistry - A European Journal, 2019, 25, 7407-7407.	3.3	0
8	1,3,9â€Triazaâ€2â€oxophenoxazine: An Artificial Nucleobase Forming Highly Stable Selfâ€Base Pairs with Three Ag ^I Ions in a Duplex. Chemistry - A European Journal, 2019, 25, 7443-7448.	3.3	31
9	Syntheses of prodrug-type 2â€2-O-methyldithiomethyl oligonucleotides modified at natural four nucleoside residues and their conversions into natural 2â€2-hydroxy oligonucleotides under reducing condition. Bioorganic and Medicinal Chemistry, 2018, 26, 5838-5844.	3.0	3
10	2′â€ <i>O</i> ,4′â€ <i>C</i> â€Methyleneâ€Bridged Nucleic Acids Stabilize Metalâ€Mediated Base Pairing in a Duplex. ChemBioChem, 2018, 19, 2372-2379.	a DNA 2.6	12
11	Effective gene silencing activity of prodrug-type 2′-O-methyldithiomethyl siRNA compared with non-prodrug-type 2′-O-methyl siRNA. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2171-2174.	2.2	8
12	Synthesis and thermal stabilities of oligonucleotides containing 2′-O,4′-C-methylene bridged nucleic acid with a phenoxazine base. Organic and Biomolecular Chemistry, 2017, 15, 8145-8152.	2.8	9
13	Gene silencing by 2′-O-methyldithiomethyl-modified siRNA, a prodrug-type siRNA responsive to reducing environment. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 845-848.	2.2	14
14	A New Nucleic Acid Prodrug Responsive to High Thiol Concentration: Synthesis of 2′―O â€Methyldithiomethylâ€Modified Oligonucleotides by Post‧ynthetic Modification. Current Protocols in Nucleic Acid Chemistry, 2015, 62, 4.63.1-4.63.20.	0.5	1
15	Synthesis of novel cationic spermine-conjugated phosphotriester oligonucleotide for improvement of cell membrane permeability. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3610-3615.	2.2	5
16	Regulated Incorporation of Two Different Metal Ions into Programmed Sites in a Duplex by DNA Polymerase Catalyzed Primer Extension. Angewandte Chemie - International Edition, 2014, 53, 6624-6627.	13.8	51
17	Conjugation with Receptor-Targeted Histidine-Rich Peptides Enhances the Pharmacological Effectiveness of Antisense Oligonucleotides. Bioconjugate Chemistry, 2014, 25, 165-170.	3.6	21
18	Effect of Ala replacement with Aib in amphipathic cell-penetrating peptide on oligonucleotide delivery into cells. Bioorganic and Medicinal Chemistry, 2013, 21, 7669-7673.	3.0	29

Osamu Nakagawa

#	Article	IF	CITATIONS
19	A post-synthetic approach for the synthesis of 2′-O-methyldithiomethyl-modified oligonucleotides responsive to a reducing environment. Chemical Communications, 2013, 49, 7620.	4.1	22
20	Covalent conjugation of oligonucleotides with cell-targeting ligands. Bioorganic and Medicinal Chemistry, 2013, 21, 6217-6223.	3.0	17
21	Aptamer-Mediated Delivery of Splice-Switching Oligonucleotides to the Nuclei of Cancer Cells. Nucleic Acid Therapeutics, 2012, 22, 187-195.	3.6	104
22	Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH. Biochimie, 2012, 94, 1032-1040.	2.6	13
23	The Chemistry and Biology of Oligonucleotide Conjugates. Accounts of Chemical Research, 2012, 45, 1067-1076.	15.6	107
24	Ag ^I Ion Mediated Formation of a C–A Mispair by DNA Polymerases. Angewandte Chemie - International Edition, 2012, 51, 6464-6466.	13.8	75
25	Cellular Uptake and Intracellular Trafficking of Antisense and siRNA Oligonucleotides. Bioconjugate Chemistry, 2012, 23, 147-157.	3.6	167
26	Cellular uptake of covalent conjugates of oligonucleotide with membrane-modifying peptide, peptaibol. Bioorganic and Medicinal Chemistry, 2012, 20, 3219-3222.	3.0	2
27	Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site. Bioorganic and Medicinal Chemistry, 2012, 20, 3470-3479.	3.0	12
28	Optimization of fluorescence property of the 8-oxodGclamp derivative for better selectivity for 8-oxo-2′-deoxyguanosine. Tetrahedron, 2011, 67, 6746-6752.	1.9	25
29	Integrin Targeted Delivery of Gene Therapeutics. Theranostics, 2011, 1, 211-219.	10.0	40
30	Synthesis of new derivatives of 8-oxoG-Clamp for better understanding the recognition mode and improvement of selective affinity. Bioorganic and Medicinal Chemistry, 2010, 18, 3992-3998.	3.0	27
31	The Spermine–Bisaryl Conjugate as a Potent Inducer of B―to Zâ€ÐNA Transition. Chemistry - A European Journal, 2010, 16, 11993-11999.	3.3	18
32	Targeted Intracellular Delivery of Antisense Oligonucleotides via Conjugation with Small-Molecule Ligands. Journal of the American Chemical Society, 2010, 132, 8848-8849.	13.7	111
33	Selective fluorescence quenching of the 8-oxoG-clamp by 8-oxodeoxyguanosine in ODN. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 727-730.	2.2	29
34	Specific Fluorescent Probe for 8â€Oxoguanosine. Angewandte Chemie - International Edition, 2008, 47, 8983-8983.	13.8	3
35	Selective Fluorescence Detection Of 8-Oxoguanosine With 8-Oxog-Clamp. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 645-649.	1.1	14
36	Acid-Mediated Cleavage oF Oligonucleotide P3′ → N5′ Phosphoramidates Triggered by Sequence-Specific Triplex Formation. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 893-896.	1.1	6

Osamu Nakagawa

#	Article	IF	CITATIONS
37	Doubleâ€Stranded DNAâ€Templated Oligonucleotide Digestion Triggered by Triplex Formation. ChemBioChem, 2007, 8, 1924-1928.	2.6	9
38	Specific Fluorescent Probe for 8-Oxoguanosine. Angewandte Chemie - International Edition, 2007, 46, 4500-4503.	13.8	53
39	PRESENCE OF 2â€ ² ,5â€ ² -LINKAGES IN A HOMOPYRIMIDINE DNA OLIGONUCLEOTIDE PROMOTES STABLE TRIPLE> FORMATION UNDER PHYSIOLOGICAL CONDITIONS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1055-1058.	< 1.1	1
40	Promotion of stable triplex formation by partial incorporation of 2′,5′-phosphodiester linkages into triplex-forming oligonucleotides. Chemical Communications, 2005, , 2793.	4.1	6
41	Asymmetric epoxidation of digeranyl by cultured cells ofNicotiana tabacum. Journal of Labelled Compounds and Radiopharmaceuticals, 2003, 46, 401-409.	1.0	1
42	Synthesis of a novel bridged nucleoside bearing a fused-azetidine ring, 3â€2-amino-3â€2,4â€2-BNA monomer. Tetrahedron Letters, 2003, 44, 5267-5270.	1.4	27
43	Synthesis and properties of a novel bridged nucleic acid with a P3′ → N5′ phosphoramidate linkage, 5′-amino-2′,4′-BNA. Chemical Communications, 2003, , 2202-2203.	4.1	26
44	First Synthesis of Subelliptenone F, an Inhibitor of Topoisomerase II. Chemistry Letters, 2000, 29, 464-465.	1.3	4
45	Facile Syntheses of [8,9-2H2]- and [8-2H]-digeranyl. Journal of Labelled Compounds and Radiopharmaceuticals, 2000, 43, 1301-1309.	1.0	3