Flavia Fontana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1970442/publications.pdf

Version: 2024-02-01

41 papers 2,036 citations

236925 25 h-index 302126 39 g-index

47 all docs

47 docs citations

47 times ranked

3023 citing authors

#	Article	IF	CITATIONS
1	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. Advanced Materials, 2022, 34, e2108012.	21.0	25
2	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors (Adv. Mater. 9/2022). Advanced Materials, 2022, 34, .	21.0	0
3	Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomaterialia, 2021, 133, 231-243.	8.3	72
4	Requirements for Animal Experiments: Problems and Challenges. Small, 2021, 17, e2004182.	10.0	33
5	Microneedles for painless transdermal immunotherapeutic applications. Journal of Controlled Release, 2021, 330, 185-217.	9.9	131
6	Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. Advances in Experimental Medicine and Biology, 2021, 1295, 135-162.	1.6	0
7	Development of vaccine formulations: past, present, and future. Drug Delivery and Translational Research, 2021, 11, 353-372.	5.8	41
8	Dualâ€Crosslinked Dynamic Hydrogel Incorporating {Mo ₁₅₄ } with pH and NIR Responsiveness for Chemoâ€Photothermal Therapy. Advanced Materials, 2021, 33, e2007761.	21.0	73
9	Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chemical Communications, 2021, 57, 4212-4229.	4.1	25
10	Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. Small, 2020, 16, e1904673.	10.0	63
11	Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. Nanoscale, 2020, 12, 2350-2358.	5.6	42
12	Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Advances, 2020, 10, 35198-35205.	3.6	10
13	Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44554-44562.	8.0	17
14	Influence of Cell Membrane Wrapping on the Cellâ^'Porous Silicon Nanoparticle Interactions. Advanced Healthcare Materials, 2020, 9, e2000529.	7.6	11
15	Microfluidics: Microfluidics for Production of Particles: Mechanism, Methodology, and Applications (Small 9/2020). Small, 2020, 16, 2070048.	10.0	5
16	Tandemâ€Massâ€Tag Based Proteomic Analysis Facilitates Analyzing Critical Factors of Porous Silicon Nanoparticles in Determining Their Biological Responses under Diseased Condition. Advanced Science, 2020, 7, 2001129.	11.2	11
17	Microfluidics: Nuts and Bolts: Microfluidics for the Production of Biomaterials (Adv. Mater.) Tj ETQq $1\ 1\ 0.78431$	4 rgBT /Ov	erlgck 10 Tf5
18	Biohybrid Vaccines for Improved Treatment of Aggressive Melanoma with Checkpoint Inhibitor. ACS Nano, 2019, 13, 6477-6490.	14.6	36

#	Article	IF	CITATIONS
19	Advanced Nanovaccines for Immunotherapy Applications: From Concept to Animal Tests. , 2019, , 231-260.		1
20	Artificially cloaked viral nanovaccine for cancer immunotherapy. Nature Communications, 2019, 10, 5747.	12.8	86
21	Nuts and Bolts: Microfluidics for the Production of Biomaterials. Advanced Materials Technologies, 2019, 4, 1800611.	5.8	14
22	Immunostimulation and Immunosuppression: Nanotechnology on the Brink. Small Methods, 2018, 2, 1700347.	8.6	32
23	Bioengineered Porous Silicon Nanoparticles@Macrophages Cell Membrane as Composite Platforms for Rheumatoid Arthritis. Advanced Functional Materials, 2018, 28, 1801355.	14.9	44
24	Production of pure drug nanocrystals and nano co-crystals by confinement methods. Advanced Drug Delivery Reviews, 2018, 131, 3-21.	13.7	115
25	Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Advanced Materials, 2018, 30, e1703740.	21.0	127
26	Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Advanced Drug Delivery Reviews, 2018, 128, 54-83.	13.7	159
27	Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS Applied Materials & Interfaces, 2018, 10, 44354-44367.	8.0	47
28	pH and Reactive Oxygen Speciesâ€Sequential Responsive Nanoâ€inâ€Micro Composite for Targeted Therapy of Inflammatory Bowel Disease. Advanced Functional Materials, 2018, 28, 1806175.	14.9	68
29	Engineered Multifunctional Albuminâ€Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small, 2018, 14, e1800462.	10.0	53
30	Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelleâ€Like Functions. Advanced Materials, 2017, 29, 1605375.	21.0	54
31	Nanovaccines: Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy (Adv. Mater. 7/2017). Advanced Materials, 2017, 29, .	21.0	O
32	Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab on A Chip, 2017, 17, 1856-1883.	6.0	183
33	Nanoreactors: Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelleâ€Like Functions (Adv. Mater. 11/2017). Advanced Materials, 2017, 29, .	21.0	1
34	Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy. Advanced Materials, 2017, 29, 1603239.	21.0	144
35	Quercetinâ€Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicinâ€Resistant Cancer Cells. Advanced Healthcare Materials, 2017, 6, 1601009.	7.6	49
36	Inside Cover Image, Volume 9, Issue 1. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1459.	6.1	0

FLAVIA FONTANA

#	Article	IF	CITATIONS
37	Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1421.	6.1	72
38	Nutlinâ€3a and Cytokine Coâ€loaded Spermineâ€Modified Acetalated Dextran Nanoparticles for Cancer Chemoâ€lmmunotherapy. Advanced Functional Materials, 2017, 27, 1703303.	14.9	61
39	Microparticles to enhance delivery of drugs and growth factors into wound sites. Therapeutic Delivery, 2016, 7, 711-732.	2.2	13
40	Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 988-996.	8.0	33
41	Microfluidics as a cutting-edge technique for drug delivery applications. Journal of Drug Delivery Science and Technology, 2016, 34, 76-87.	3.0	75