Vladimir v Popik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1970294/publications.pdf

Version: 2024-02-01

98 5,622 37 73
papers citations h-index g-index

106 106 106 106 6431

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Ultrafast transient absorption spectroscopy of the photodecarbonylation of photo-oxadibenzocyclooctyne (photo-ODIBO). Journal of Chemical Physics, 2021, 154, 074302.	1.2	1
2	Refining of Particulates at Stimuliâ€Responsive Interfaces: Labelâ€Free Sorting and Isolation. Angewandte Chemie - International Edition, 2021, , .	7.2	3
3	Femtosecond photodecarbonylation of photo-ODIBO studied by stimulated Raman spectroscopy and density functional theory. Physical Chemistry Chemical Physics, 2021, 23, 25637-25648.	1.3	1
4	Photo-Click-Facilitated Screening Platform for the Development of Hetero-Bivalent Agents with High Potency. Journal of Organic Chemistry, 2020, 85, 5771-5777.	1.7	6
5	Development of Bispecific NT-PSMA Heterodimer for Prostate Cancer Imaging: A Potential Approach to Address Tumor Heterogeneity. Bioconjugate Chemistry, 2019, 30, 1314-1322.	1.8	8
6	Dual-Bioorthogonal Molecular Tool: "Click-to-Release―and "Double-Click―Reactivity on Small Molecules and Material Surfaces. Bioconjugate Chemistry, 2019, 30, 1140-1149.	1.8	23
7	[¹⁸ F]ODIBO: a prosthetic group for bioorthogonal radiolabeling of macromolecules <i>via</i> strain-promoted alkyne–azide cycloaddition. Organic and Biomolecular Chemistry, 2018, 16, 363-366.	1.5	15
8	The efficiency of ¹⁸ F labelling of a prostate specific membrane antigen ligand <i>via</i> strain-promoted azideâ€"alkyne reaction: reaction speed <i>versus</i> hydrophilicity. Chemical Communications, 2018, 54, 7810-7813.	2.2	9
9	Frontispiece: "Shine & Click―Photoâ€Induced Interfacial Unmasking of Strained Alkynes on Small Waterâ€Soluble Gold Nanoparticles. Chemistry - A European Journal, 2017, 23, .	1.7	O
10	Artificial Membrane Fusion Triggered by Strain-Promoted Alkyne–Azide Cycloaddition. Bioconjugate Chemistry, 2017, 28, 923-932.	1.8	20
11	Facile Quenching and Spatial Patterning of Cylooctynes via Strain-Promoted Alkyne–Azide Cycloaddition of Inorganic Azides. Bioconjugate Chemistry, 2017, 28, 1560-1565.	1.8	23
12	Temporal Labeling of Nascent RNA Using Photoclick Chemistry in Live Cells. Journal of the American Chemical Society, 2017, 139, 8090-8093.	6.6	47
13	Photo-cleavable analog of BAPTA for the fast and efficient release of Ca ²⁺ . Chemical Communications, 2017, 53, 5598-5601.	2.2	4
14	Multiphoton Activation of Photo-Strain-Promoted Azide Alkyne Cycloaddition "Click―Reagents Enables in Situ Labeling with Submicrometer Resolution. Journal of the American Chemical Society, 2017, 139, 14029-14032.	6.6	52
15	"Shine & Click―Photoâ€Induced Interfacial Unmasking of Strained Alkynes on Small Waterâ€Soluble Gold Nanoparticles. Chemistry - A European Journal, 2017, 23, 1052-1059.	1.7	27
16	Robust, Solvent-Free, Catalyst-Free Click Chemistry for the Generation of Highly Stable Densely Grafted Poly(ethylene glycol) Polymer Brushes by the Grafting To Method and Their Properties. Macromolecules, 2016, 49, 7625-7631.	2.2	44
17	Sequential Photochemistry of Dibenzo[<i>>a</i> , <i>e</i>)][8]annulene-1,6-dione: Selective Formation of Didehydrodibenzo[<i>a</i> , <i>e</i>)[8]annulenes with Ultrafast SPAAC Reactivity. Journal of Organic Chemistry. 2016, 81, 8850-8857.	1.7	36
18	Multifunctional Surface Manipulation Using Orthogonal Click Chemistry. Langmuir, 2016, 32, 6600-6605.	1.6	45

#	Article	IF	CITATIONS
19	Cyclopropenone-caged Sondheimer diyne (dibenzo[a,e]cyclooctadiyne): a photoactivatable linchpin for efficient SPAAC crosslinking. Chemical Communications, 2016, 52, 553-556.	2.2	35
20	A Clickable and Photocleavable Lipid Analogue for Cell Membrane Delivery and Release. Bioconjugate Chemistry, 2015, 26, 1021-1031.	1.8	21
21	Mutation of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase at Trp-110 affects stereoselectivity of aromatic ketone reduction. Organic and Biomolecular Chemistry, 2014, 12, 5905-5910.	1.5	37
22	Copperâ€Free Clickâ€Chemistry Platform to Functionalize Cisplatin Prodrugs. Chemistry - A European Journal, 2014, 20, 6861-6865.	1.7	27
23	Direct grafting of poly(pentafluorophenyl acrylate) onto oxides: versatile substrates for reactive microcapillary printing and self-sorting modification. Chemical Communications, 2014, 50, 5307-5309.	2.2	28
24	Facile Method for the Siteâ€Specific, Covalent Attachment of Fullâ€Length IgG onto Nanoparticles. Small, 2014, 10, 3354-3363.	5.2	45
25	A Dynamic Duo: Pairing Click Chemistry and Postpolymerization Modification To Design Complex Surfaces. Accounts of Chemical Research, 2014, 47, 2999-3008.	7.6	55
26	Photoactivatable Fluorescein Derivatives Caged with a (3-Hydroxy-2-naphthalenyl)methyl Group. Journal of Organic Chemistry, 2014, 79, 7665-7671.	1.7	8
27	Selective and reversible photochemical derivatization of cysteine residues in peptides and proteins. Chemical Science, 2014, 5, 1591-1598.	3.7	63
28	Sequential "Click―– "Photo-Click―Cross-Linker for Catalyst-Free Ligation of Azide-Tagged Substrates. Journal of Organic Chemistry, 2014, 79, 2702-2708.	1.7	51
29	Photo-click chemistry strategies for spatiotemporal control of metal-free ligation, labeling, and surface derivatization. Pure and Applied Chemistry, 2013, 85, 1499-1513.	0.9	42
30	Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chemical Reviews, 2013, 113, 119-191.	23.0	1,386
31	Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 194-201.	1.7	291
32	An acetylene zipperâ€"Sonogashira reaction sequence for the efficient synthesis of conjugated arylalkadiynols. Tetrahedron Letters, 2013, 54, 2235-2238.	0.7	11
33	Sortase-Tag Expressed Protein Ligation: Combining Protein Purification and Site-Specific Bioconjugation into a Single Step. Analytical Chemistry, 2013, 85, 11090-11097.	3.2	80
34	Bichromophoric fluorescent photolabile protecting group for alcohols and carboxylic acids. Photochemical and Photobiological Sciences, 2012, 11, 518-521.	1.6	7
35	Photoreactive Polymer Brushes for High-Density Patterned Surface Derivatization Using a Diels–Alder Photoclick Reaction. Journal of the American Chemical Society, 2012, 134, 179-182.	6.6	93
36	Rate Determination of Azide Click Reactions onto Alkyne Polymer Brush Scaffolds: A Comparison of Conventional and Catalyst-Free Cycloadditions for Tunable Surface Modification. Langmuir, 2012, 28, 14693-14702.	1.6	52

#	Article	IF	CITATIONS
37	Photochemical generation of oxa-dibenzocyclooctyne (ODIBO) for metal-free click ligations. Organic and Biomolecular Chemistry, 2012, 10, 8200.	1.5	55
38	Fluorophore Targeting to Cellular Proteins via Enzyme-Mediated Azide Ligation and Strain-Promoted Cycloaddition. Journal of the American Chemical Society, 2012, 134, 3720-3728.	6.6	114
39	Membrane labeling and immobilization viacopper-free click chemistry. Chemical Communications, 2012, 48, 1431-1433.	2.2	24
40	9-Aryl-9-xanthenols: a convenient platform for the design of fluorimetric and colorimetric pH indicators. Organic and Biomolecular Chemistry, 2012, 10, 9214.	1.5	9
41	Attach, Remove, or Replace: Reversible Surface Functionalization Using Thiol–Quinone Methide Photoclick Chemistry. Journal of the American Chemical Society, 2012, 134, 8408-8411.	6.6	91
42	Preparation and photophysical properties of a caged kynurenine. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2734-2737.	1.0	9
43	Synthesis and Reactivity of Cinnoline-Fused Cyclic Enediyne. Journal of Organic Chemistry, 2011, 76, 6937-6941.	1.7	27
44	Patterned Surface Derivatization Using Diels–Alder Photoclick Reaction. Journal of the American Chemical Society, 2011, 133, 15730-15736.	6.6	89
45	Improved Tumor Targeting of Polymer-Based Nanovesicles Using Polymer–Lipid Blends. Bioconjugate Chemistry, 2011, 22, 2021-2029.	1.8	85
46	[18F]Azadibenzocyclooctyne ([18F]ADIBO): A biocompatible radioactive labeling synthon for peptides using catalyst free [3+2] cycloaddition. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6987-6991.	1.0	43
47	Light-Induced Hetero-Dielsâ^'Alder Cycloaddition: A Facile and Selective Photoclick Reaction. Journal of the American Chemical Society, 2011, 133, 5573-5579.	6.6	123
48	Metal-Free Sequential $[3 + 2]$ -Dipolar Cycloadditions using Cyclooctynes and 1,3-Dipoles of Different Reactivity. Journal of the American Chemical Society, 2011, 133, 949-957.	6.6	187
49	Access to 2,3-bis(buta-1,3-diynyl)pyridines. Mendeleev Communications, 2011, 21, 19-20.	0.6	3
50	Wolff rearrangement of βâ€alkynylâ€Î±â€diazoâ€Î²â€ketoesters: lightâ€induced acetylene–allene isomerization use for activation of enediynes. Journal of Physical Organic Chemistry, 2011, 24, 969-975.	n and its	9
51	Dual Reactivity of Hydroxy- and Methoxy- Substituted <i>>o-</i> Quinone Methides in Aqueous Solutions: Hydration versus Tautomerization Journal of Organic Chemistry, 2010, 75, 7338-7346.	1.7	29
52	Photochemical Triggering of the Bergman and Myers - Saito Cyclizations. Australian Journal of Chemistry, 2010, 63, 1099.	0.5	18
53	Nucleophilic Cycloaromatization of Ynamide-Terminated Enediynes. Journal of Organic Chemistry, 2010, 75, 5953-5962.	1.7	39
54	Surface Functionalization Using Catalyst-Free Azideâ^'Alkyne Cycloaddition. Bioconjugate Chemistry, 2010, 21, 2076-2085.	1.8	205

#	Article	IF	CITATIONS
55	High Density Orthogonal Surface Immobilization via Photoactivated Copper-Free Click Chemistry. Journal of the American Chemical Society, 2010, 132, 11024-11026.	6.6	203
56	Photochemical Generation and the Reactivity of $\langle i \rangle \circ \langle i \rangle$. Naphthoquinone Methides in Aqueous Solutions. Journal of the American Chemical Society, 2009, 131, 11892-11899.	6.6	120
57	Photochemical Generation and Reversible Cycloaromatization of a Nine-Membered Ring Cyclic Enediyne. Journal of the American Chemical Society, 2009, 131, 351-356.	6.6	54
58	Selective Labeling of Living Cells by a Photo-Triggered Click Reaction. Journal of the American Chemical Society, 2009, 131, 15769-15776.	6.6	341
59	Caging of Carbonyl Compounds as Photolabile (2,5-Dihydroxyphenyl)ethylene Glycol Acetals. Journal of Organic Chemistry, 2009, 74, 1802-1804.	1.7	23
60	Dual reactivity of a photochemically-generated cyclic enyne–allene. Chemical Communications, 2009, , 5707.	2.2	25
61	Photolabile Protection of Alcohols, Phenols, and Carboxylic Acids with 3-Hydroxy-2-Naphthalenemethanol. Journal of Organic Chemistry, 2008, 73, 7611-7615.	1.7	40
62	Photolabile Protection of 1,2- and 1,3-Diols with Salicylaldehyde Derivatives. Organic Letters, 2008, 10, 5277-5280.	2.4	20
63	Enhancement of the Reactivity of Photochemically Generated Enediynes via Ketoâ^Enol Tautomerization. Journal of the American Chemical Society, 2008, 130, 11771-11777.	6.6	31
64	Towards Photoswitchable Enediyne Antibiotics: Single and Two-Photon Triggering of Bergman Cyclization. Current Topics in Medicinal Chemistry, 2008, 8, 460-469.	1.0	22
65	2,5-Dihydroxybenzyl and (1,4-Dihydroxy-2-naphthyl)methyl, Novel Reductively Armed Photocages for the Hydroxyl Moiety. Journal of Organic Chemistry, 2007, 72, 9190-9194.	1.7	30
66	Amino Substituted Bisketenes:Â Generation, Structure, and Reactivity. Journal of Organic Chemistry, 2007, 72, 1951-1956.	1.7	20
67	Triggering of the Bergman Cyclization by Photochemical Ring Contraction. Facile Cycloaromatization of Benzannulated Cyclodeca-3,7-diene-1,5-diynes. Journal of the American Chemical Society, 2007, 129, 3792-3793.	6.6	40
68	Synthesis and Unusual Reactivity of N-Tosyl-4,5-benzoazacyclodeca-2,6-diyne, Yneamino-Containing Enediyne. Journal of the American Chemical Society, 2007, 129, 12062-12063.	6.6	21
69	The 2-Oxocyclobutanecarboxylic Acid Ketoâ^'Enol System in Aqueous Solution:  A Remarkable Acid-Strengthening Effect of the Cyclobutane Ring. Journal of Organic Chemistry, 2006, 71, 4460-4467.	1.7	9
70	Two-photon induced photodecarbonylation reaction of cyclopropenones. Chemical Communications, 2006, , 454-456.	2.2	37
71	Mechanism of the Cyclopropenone Decarbonylation Reaction. A Density Functional Theory and Transient Spectroscopy Study. Journal of Physical Chemistry A, 2006, 110, 1749-1757.	1.1	52
72	Two-Photon Photochemical Generation of Reactive Enediyne. Journal of Organic Chemistry, 2006, 71, 7417-7421.	1.7	40

#	Article	IF	Citations
73	Colchitaxel, a coupled compound made from microtubule inhibitors colchicine and paclitaxel. Beilstein Journal of Organic Chemistry, 2006, 2, 13.	1.3	27
74	Photoswitchable Enediynes: Use of Cyclopropenone as Photocleavable Masking Group for the Enediyne Triple Bond ChemInform, 2005, 36, no.	0.1	0
75	The role of molecular geometry in the Wolff rearrangement of α-diazocarbonyl compounds — Conformational control or structural constraints?. Canadian Journal of Chemistry, 2005, 83, 1382-1390.	0.6	27
76	Photoswitchable enediynes: use of cyclopropenone as photocleavable masking group for the enediyne triple bond. Chemical Communications, 2005, , 617.	2.2	25
77	Application of Photochemical Decarbonylation of Cyclopropenones for the in Situ Generation of Reactive Enediynes. Construction of a Cyclopropenone-Containing Enediyne Precursor by Using a Cyclopropenone Acetal Building Block. Journal of Organic Chemistry, 2005, 70, 1297-1305.	1.7	26
78	Structure and Photochemistry of 18-Diazo-1,4,7,10,13,16-hexaoxacyclononadeca-17,19-dione and Its Sodium and Potassium Complexes. Control of the Ground-State Conformation of 2-Diazo-1,3-dicarbonyl Fragment via Hostâ^Guest Complexation. Journal of Organic Chemistry, 2005, 70, 9867-9873.	1.7	9
79	Experimental and Theoretical Analysis of the Photochemistry and Thermal Reactivity of Ethyl Diazomalonate and Its Diazirino Isomer. The Role of Molecular Geometry in the Decomposition of Diazocarbonyl Compounds. Journal of the American Chemical Society, 2004, 126, 11293-11302.	6.6	24
80	Wolff Rearrangement of 2-Diazo-1(2H)-Naphthalenone Induced by Nonresonant Two-Photon Absorption of NIR Radiation. Journal of the American Chemical Society, 2004, 126, 4058-4059.	6.6	52
81	Photoreactions of 3-Diazo-3H-benzofuran-2-one; Dimerization and Hydrolysis of Its Primary Photoproduct, A Quinonoid Cumulenone:Â A Study by Time-Resolved Optical and Infrared Spectroscopy. Journal of the American Chemical Society, 2003, 125, 12872-12880.	6.6	15
82	Wavelength-Dependent Photochemistry of Diazo Meldrum's Acid and Its Spirocyclic Isomer, Diazirino Meldrum's Acid:  Wolff Rearrangement versus Isomerization. Journal of the American Chemical Society, 2003, 125, 1456-1457.	6.6	29
83	Experimental and Theoretical Investigation of Reversible Interconversion, Thermal Reactions, and Wavelength-Dependent Photochemistry of Diazo Meldrum's Acid and Its Diazirine Isomer, 6,6-Dimethyl-5,7-dioxa-1,2-diaza-spiro[2,5]oct-1-ene-4,8-dione1. Journal of the American Chemical Society, 2003, 125, 14153-14162.	6.6	46
84	The 2-Oxocyclohexanecarboxylic Acid Ketoâ^'Enol System in Aqueous Solution. Journal of the American Chemical Society, 2003, 125, 6478-6484.	6.6	14
85	Highly Efficient Photochemical Generation of a Triple Bond:Â Synthesis, Properties, and Photodecarbonylation of Cyclopropenones. Journal of Organic Chemistry, 2003, 68, 7833-7840.	1.7	90
86	Photochemical Ring Opening of 7-Benzoyl- and 7-Methoxycarbonyldibenzonorcaradienes. Competing 1,2-Hydrogen Shift and Cyclization Reactions of 1,3-Diradicals. Organic Letters, 2001, 3, 1885-1888.	2.4	9
87	Flash Photolytic Generation and Study of the Enol of 2-Hydroxy-2-cyano-N-methylacetamide in Aqueous Solution, Leading to an Empirically-Based Estimate of the Ketoâ^'Enol Equilibrium Constant for the Parent Unsubstituted Acetamide in That Medium. Journal of the American Chemical Society, 2001. 123. 2681-2682.	6.6	19
88	Flash Photolytic Investigation of 4-Diazoisothiochroman-3-one in Aqueous Solution:Â Observation of a Short-Lived Carboxylic Acid Enol. Journal of the American Chemical Society, 1999, 121, 11330-11335.	6.6	13
89	Scavenging of Intermediates Formed in Photolysis of $\hat{l}\pm$ -Diazocarbonyl Compounds and Hydroxycyclopropenones. Implication on the Mechanism of the Photo-Wolff Reaction. Journal of the American Chemical Society, 1999, 121, 5930-5932.	6.6	31
90	The acid dissociation constant of triphenylethenethiol, a simple thioenol, and that of its oxygen-enol analog. Canadian Journal of Chemistry, 1998, 76, 657-661.	0.6	8

#	Article	IF	CITATIONS
91	Flash Photolysis of 10-Diazo-9(10H)-phenanthrenone in Aqueous Solution. Hydration of Fluorenylideneketene and the Fluorene-9-carboxylic Acid Ketoâ^'Enol System. Journal of the American Chemical Society, 1997, 119, 8417-8424.	6.6	33
92	The 2-Oxocyclopentanecarboxylic Acid Ketoâ^Enol System in Aqueous Solution:  Generation of the Enol by Hydration of an Acylketene. Journal of the American Chemical Society, 1997, 119, 11183-11190.	6.6	13
93	The Mandelic Acid Ketoâ^Enol System in Aqueous Solution. Generation of the Enol by Hydration of Phenylhydroxyketene and Phenylcarboxycarbene. Journal of the American Chemical Society, 1997, 119, 10203-10212.	6.6	41
94	Acid-catalyzed hydrolysis of phenyldiazoacetic acid. Effect of an ?-diazo group on carboxylic acid acidity. Journal of Physical Organic Chemistry, 1995, 8, 552-558.	0.9	3
95	Dicarbomethoxycarbene. A Laser Flash Photolysis Study. Journal of the American Chemical Society, 1995, 117, 5477-5483.	6.6	54
96	Stereochemistry and thermal stability of diazodiketones. Journal of the Chemical Society Perkin Transactions II, 1993, , 1791.	0.9	14
97	Decomposition of 2-diazo-1,3-diketones: Stereocontrol of the mechanism Tetrahedron Letters, 1992, 33, 4483-4486.	0.7	15
98	Refining of Particulates at Stimuliâ€Responsive Interfaces: Labelâ€Free Sorting and Isolation. Angewandte Chemie, 0, , e202110990.	1.6	0