List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1969988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The pH Taxis of an Intelligent Catalytic Microbot. Small, 2013, 9, 1916-1920.	5.2	102
2	Instability and Dynamics of Thin Liquid Bilayers. Industrial & Engineering Chemistry Research, 2005, 44, 1259-1272.	1.8	98
3	Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring. Biosensors and Bioelectronics, 2017, 94, 544-551.	5.3	74
4	A comprehensive review on batteries and supercapacitors: Development and challenges since their inception. Energy Storage, 2023, 5, .	2.3	63
5	Paper-based α- amylase detector for point-of-care diagnostics. Biosensors and Bioelectronics, 2016, 78, 447-453.	5.3	60
6	Electric-Field-Induced Interfacial Instabilities and Morphologies of Thin Viscous and Elastic Bilayers. Langmuir, 2009, 25, 9108-9118.	1.6	54
7	Nonlinear instabilities and pathways of rupture in thin liquid bilayers. Journal of Chemical Physics, 2006, 125, 054711.	1.2	50
8	Multimodal chemo–magnetic control of self-propelling microbots. Nanoscale, 2014, 6, 1398-1405.	2.8	46
9	Magnetic Field Guided Chemotaxis of iMushbots for Targeted Anticancer Therapeutics. ACS Biomaterials Science and Engineering, 2017, 3, 1627-1640.	2.6	46
10	The flow of magnetic nanoparticles in magnetic drug targeting. RSC Advances, 2011, 1, 238.	1.7	44
11	Graphene based multifunctional superbots. Carbon, 2015, 89, 31-40.	5.4	44
12	Dynamics of deformation and pinch-off of a migrating compound droplet in a tube. Physical Review E, 2018, 97, 043112.	0.8	39
13	Dewetting of the Thin Liquid Bilayers on Topographically Patterned Substrates: Formation of Microchannel and Microdot Arrays. Langmuir, 2008, 24, 14048-14058.	1.6	36
14	Multiscale Pattern Generation in Viscoelastic Polymer Films by Spatiotemporal Modulation of Electric Field and Control of Rheology. Advanced Functional Materials, 2011, 21, 324-335.	7.8	36
15	Self-spinning nanoparticle laden microdroplets for sensing and energy harvesting. Nanoscale, 2016, 8, 6118-6128.	2.8	35
16	Electric field induced instabilities in thin confined bilayers. Journal of Colloid and Interface Science, 2007, 311, 595-608.	5.0	31
17	Point-of-care-testing of α-amylase activity in human blood serum. Biosensors and Bioelectronics, 2019, 124-125, 75-81.	5.3	31
18	Dewetting Pathways and Morphology of Unstable Thin Liquid Bilayers. Journal of Physical Chemistry B, 2008, 112, 11564-11572.	1.2	30

#	Article	IF	CITATIONS
19	Self-Organized Ordered Arrays of Coreâ^'Shell Columns in Viscous Bilayers Formed by Spatially Varying Electric Fields. Journal of Physical Chemistry C, 2010, 114, 21020-21028.	1.5	30
20	Microdroplet based disposable sensor patch for detection of α-amylase in human blood serum. Biosensors and Bioelectronics, 2020, 165, 112333.	5.3	30
21	Electric field mediated spraying of miniaturized droplets inside microchannel. Electrophoresis, 2017, 38, 1450-1457.	1.3	28
22	Surface instability of a thin electrolyte film undergoing coupled electroosmotic and electrophoretic flows in a microfluidic channel. Electrophoresis, 2011, 32, 3257-3267.	1.3	26
23	Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes. Electrophoresis, 2017, 38, 278-286.	1.3	24
24	Instabilities and pattern miniaturization in confined and free elastic-viscous bilayers. Journal of Chemical Physics, 2008, 128, 154909.	1.2	23
25	Capillary force mediated flow patterns and nonâ€monotonic pressure drop characteristics of oilâ€water microflows. Canadian Journal of Chemical Engineering, 2015, 93, 1736-1743.	0.9	23
26	Paper-Sensors for Point-of-Care Monitoring of Drinking Water Quality. IEEE Sensors Journal, 2019, 19, 7936-7941.	2.4	23
27	Instabilities in free-surface electroosmotic flows. Theoretical and Computational Fluid Dynamics, 2012, 26, 311-318.	0.9	22
28	Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets. Physical Review E, 2017, 96, 013115.	0.8	22
29	Dynamics of drop formation from submerged orifices under the influence of electric field. Physics of Fluids, 2018, 30, 122104.	1.6	20
30	Pattern-Directed Ordering of Spin-Dewetted Liquid Crystal Micro- or Nanodroplets as Pixelated Light Reflectors and Locomotives. ACS Applied Materials & Interfaces, 2017, 9, 1066-1076.	4.0	19
31	Paper Based Enzymatic Chemiresistor for POC Detection of Ethanol in Human Breath. IEEE Sensors Journal, 2020, 20, 2278-2286.	2.4	19
32	Magnetically Actuated Carbon Soot Nanoparticle-Based Catalytic CARBOts Coated with Ni/Pt Nanofilms for Water Detoxification and Oil-Spill Recovery. ACS Applied Nano Materials, 2020, 3, 3459-3470.	2.4	19
33	Electro-magnetic-field-induced flow and interfacial instabilities in confined stratified liquid layers. Theoretical and Computational Fluid Dynamics, 2012, 26, 23-28.	0.9	18
34	Electric-Field-Induced Instabilities in Thin Liquid Trilayers Confined between Patterned Electrodes. Journal of Physical Chemistry C, 2012, 116, 22847-22858.	1.5	16
35	From finite-amplitude equilibrium structures to dewetting in thin polymer films on chemically patterned substrates. Soft Matter, 2012, 8, 10394.	1.2	15
36	Localized electric field induced transition and miniaturization of twoâ€phase flow patterns inside microchannels. Electrophoresis, 2014, 35, 2930-2937.	1.3	15

#	Article	IF	CITATIONS
37	Digitization of two-phase flow patterns in a microchannel induced by an external AC field. RSC Advances, 2015, 5, 29545-29551.	1.7	15
38	Electric field mediated squeezing to bending transitions of interfacial instabilities for digitization and mixing of two-phase microflows. Physics of Fluids, 2019, 31, .	1.6	15
39	Electric field mediated von KÃįrmÃįn vortices in stratified microflows: transition from linear instabilities to coherent mixing. Journal of Fluid Mechanics, 2019, 865, 169-211.	1.4	15
40	Microfluidic Immunosensor for Point-of-Care-Testing of Beta-2-Microglobulin in Tear. ACS Sustainable Chemistry and Engineering, 2020, 8, 9268-9276.	3.2	15
41	Self-Organized Large-Scale Integration of Mesoscale-Ordered Heterojunctions for Process-Intensified Photovoltaics. Physical Review Applied, 2018, 10, .	1.5	14
42	Unexplored Pathways To Charge Storage in Supercapacitors. Journal of Physical Chemistry C, 2019, 123, 195-204.	1.5	14
43	Electric field and van der Waals force induced instabilities in thin viscoelastic bilayers. Physics of Fluids, 2012, 24, .	1.6	13
44	Steady and Oscillatory Lorentz-Force-Induced Transport and Digitization of Two-Phase Microflows. Physical Review Applied, 2018, 10, .	1.5	13
45	Electroosmosis with Augmented Mixing in Rigid to Flexible Microchannels with Surface Patterns. Industrial & Engineering Chemistry Research, 2020, 59, 3717-3729.	1.8	13
46	Switching of interfacial instabilities from the liquid/air interface to the liquid/liquid interface in a polymer bilayer. Soft Matter, 2011, 7, 8056.	1.2	12
47	Field induced anomalous spreading, oscillation, ejection, spinning, and breaking of oil droplets on a strongly slipping water surface. Faraday Discussions, 2017, 199, 115-128.	1.6	12
48	Graphene oxide nanohybrids for electron transfer-mediated antimicrobial activity. Nanoscale Advances, 2019, 1, 3727-3740.	2.2	12
49	Influence of the mutable kinetic parameters on the adhesion and debonding of thin viscoelastic films. Journal of Colloid and Interface Science, 2016, 477, 109-122.	5.0	11
50	Microfluidic Electrolyzers for Production and Separation of Hydrogen from Sea Water using Naturally Abundant Solar Energy. Energy Technology, 2017, 5, 1208-1217.	1.8	11
51	Formic acid powered reusable autonomous ferrobots for efficient hydrogen generation under ambient conditions. Journal of Materials Chemistry A, 2018, 6, 9209-9219.	5.2	11
52	Joint mass transfer of two components associated with the spontaneous interfacial convection in the liquid-liquid extraction system. Chemical Engineering Science, 2019, 195, 301-311.	1.9	11
53	Multimodal chemo-/magneto-/phototaxis of 3G CNT-bots to power fuel cells. Microsystems and Nanoengineering, 2020, 6, 19.	3.4	11
54	Long-wave interfacial instabilities in a thin electrolyte film undergoing coupled electrokinetic flows: a nonlinear analysis. Microfluidics and Nanofluidics, 2013, 15, 19-33.	1.0	10

#	Article	IF	CITATIONS
55	Micro-patterning of coatings on a fiber surface exploiting the contact instabilities of thin viscoelastic films. Physics of Fluids, 2018, 30, 114101.	1.6	10
56	Noninvasive Point-of-Care Nanobiosensing of Cervical Cancer as an Auxiliary to Pap-Smear Test. ACS Applied Bio Materials, 2021, 4, 5378-5390.	2.3	10
57	Oxygen Generation Using Catalytic Nano/Micromotors. Micromachines, 2021, 12, 1251.	1.4	10
58	Electrodynamic-contact-line-lithography with nematic liquid crystals for template-less E-writing of mesopatterns on soft surfaces. Nanoscale, 2019, 11, 16523-16533.	2.8	9
59	Magnetic field induced push–pull motility of liquibots. RSC Advances, 2016, 6, 107049-107056.	1.7	8
60	Acoustic Wave Catalyzed Urea Detection Utilizing a Pulsatile Microdroplet Sensor. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	8
61	Dipolar Alignment in a Ferroelectric Dielectric Layer of FeFETs to Boost Charge Mobility and Nonvolatile Memory. ACS Applied Electronic Materials, 2020, 2, 3187-3198.	2.0	8
62	Paper-Based Sensors for Point-of-Care Kidney Function Monitoring. IEEE Sensors Journal, 2020, 20, 9644-9651.	2.4	8
63	Single and double toroid formation during oil droplet impact on an air–water interface at low Reynolds number. Physics of Fluids, 2022, 34, .	1.6	8
64	Efficient microextraction process exploiting spontaneous interfacial convection driven by Marangoni and electric field induced instability: A computational fluid dynamics study. Physics of Fluids, 2020, 32, .	1.6	7
65	Pattern-Directed Phase Transitions and VOC Sensing of Liquid Crystal Films. Industrial & Engineering Chemistry Research, 2020, 59, 1902-1913.	1.8	7
66	A coupled continuum-statistical model to predict interfacial deformation under an external field. Journal of Colloid and Interface Science, 2021, 587, 864-875.	5.0	7
67	Electric-field-mediated instability modes and Fréedericksz transition of thin nematic films. Journal of Fluid Mechanics, 2018, 834, 464-509.	1.4	6
68	Effects of Fluid–Structure–Interaction and Surface Heterogeneity on the Electrophoresis of Microparticles. Industrial & Engineering Chemistry Research, 2019, 58, 6756-6766.	1.8	6
69	Functional liquid droplets for analyte sensing and energy harvesting. Advances in Colloid and Interface Science, 2021, 294, 102453.	7.0	6
70	Hierarchical micro- and nanofabrication by pattern-directed contact instabilities of thin viscoelastic films. Physical Review Fluids, 2017, 2, .	1.0	6
71	Carbon dots and Methylene blue facilitated photometric quantification of Hemoglobin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120906.	2.0	6
72	Pathways to community transmission of COVID–19 due to rapid evaporation of respiratory virulets. Journal of Colloid and Interface Science, 2022, 619, 229-245.	5.0	6

#	Article	IF	CITATIONS
73	Self-Organized Micropatterning of Thin Viscous Bilayers Under Microgravity. Microgravity Science and Technology, 2010, 22, 273-282.	0.7	5
74	Self-organized spreading of droplets to fluid toroids. Journal of Colloid and Interface Science, 2020, 578, 738-748.	5.0	5
75	Non-Enzymatic Urea Sensing Based on MWCNT Nanocomposite. IEEE Sensors Journal, 2021, 21, 18417-18424.	2.4	5
76	Multifunctional liquid marbles to stabilize and transport reactive fluids. Soft Matter, 2021, 17, 5084-5095.	1.2	5
77	Influence of the pre-impact shape of an oil droplet on the post-impact flow dynamics at air–water interface. Soft Matter, 2022, 18, 4102-4117.	1.2	5
78	Electro-capillary instabilities of thin leaky elastic-viscous bilayers. Physics of Fluids, 2014, 26, .	1.6	4
79	Pathways from disordered to ordered nanostructures from defect guided dewetting of ultrathin bilayers. Journal of Colloid and Interface Science, 2016, 465, 128-139.	5.0	4
80	Microdroplet photofuel cells to harvest high-density energy and dye degradation. Nanoscale Advances, 2020, 2, 1613-1624.	2.2	4
81	Giant Slip Induced Anomalous Dewetting of an Ultrathin Film on a Viscous Sublayer. Scientific Reports, 2017, 7, 14776.	1.6	3
82	Pointâ€ofâ€care stress detection of muscles using a flexible surface potential measurement prototype. Medical Devices & Sensors, 2019, 2, e10054.	2.7	3
83	Proton exchange membrane and bio-Fenton micro fuel cells for energy harvesting, gas leakage detection, and dye degradation. RSC Advances, 2021, 11, 12720-12728.	1.7	3
84	Genesis of electric field assisted microparticle assemblage in a dielectric fluid. Journal of Fluid Mechanics, 2021, 915, .	1.4	3
85	Self-organization of random copolymers to nanopatterns by localized e-beam dosing. Nanotechnology, 2021, 32, 285302.	1.3	3
86	A microfluidic viscometer: Translation of oscillatory motion of a water microdroplet in oil under electric field. Electrophoresis, 2021, 42, 2162-2170.	1.3	3
87	A computational study on osmotic chemotaxis of a reactive Janusbot. Physics of Fluids, 2020, 32, 112018.	1.6	3
88	Two Coexisting Modes in Fieldâ€Assisted AFM Nanopatterning of Thin Polymer Films. Macromolecular Chemistry and Physics, 2008, 209, 1358-1366.	1.1	2
89	Charge Leakage Mediated Pattern Miniaturization in the Electric Field Induced Instabilities of an Elastic Membrane. Industrial & Engineering Chemistry Research, 2014, 53, 18840-18851.	1.8	2
90	Multicomponent counter mass transfer in liquid-liquid extraction in presence of spontaneous interfacial convection. Materials Today: Proceedings, 2021, 46, 6304-6311.	0.9	2

#	Article	IF	CITATIONS
91	Electric-Discharge-Mediated Jetting, Crowning, Bursting, and Atomization of a Droplet. Physical Review Applied, 2021, 15, .	1.5	2
92	Physicochemical defect guided dewetting of ultrathin films to fabricate nanoscale patterns. Nanotechnology, 2021, 32, 195303.	1.3	2
93	Electric Field-Induced "Tentillar―Bridging of a Droplet Twin. Langmuir, 2022, 38, 7146-7156.	1.6	2
94	Electric field assisted multicomponent reaction in a microfluidic reactor for superior conversion and yield. Electrophoresis, 2019, 40, 401-409.	1.3	1
95	Self-Organized Liquid Crystal Droplets as Phototunable Softmasks. ACS Applied Materials & Interfaces, 2021, 13, 60697-60712.	4.0	1
96	Instabilities of a free bilayer flowing on an inclined porous medium. Physical Review E, 2013, 88, 063012.	0.8	0
97	Paper Based Flexible Carbon-FET Devices by Embedding Si Nanoparticles in Graphite Channel. , 2017, , .		0
98	Pathologic evidence of retinoblastoma seeds supported by field emission scanning electron microscopy and Raman spectroscopy. Indian Journal of Ophthalmology, 2021, 69, 3612.	0.5	0