
Takahiro Fujioka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1969885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. Journal of Membrane Science, 2010, 362, 334-345.	8.2	144
2	N-nitrosamine removal by reverse osmosis for indirect potable water reuse – A critical review based on observations from laboratory-, pilot- and full-scale studies. Separation and Purification Technology, 2012, 98, 503-515.	7.9	118
3	Probing the internal structure of reverse osmosis membranes by positron annihilation spectroscopy: Gaining more insight into the transport of water and small solutes. Journal of Membrane Science, 2015, 486, 106-118.	8.2	108
4	Nanofiltration of trace organic chemicals: A comparison between ceramic and polymeric membranes. Separation and Purification Technology, 2014, 136, 258-264.	7.9	74
5	Effects of feed solution characteristics on the rejection of N-nitrosamines by reverse osmosis membranes. Journal of Membrane Science, 2012, 409-410, 66-74.	8.2	65
6	Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse. Desalination and Water Treatment, 2011, 34, 50-56.	1.0	61
7	N-nitrosamine rejection by nanofiltration and reverse osmosis membranes: The importance of membrane characteristics. Desalination, 2013, 316, 67-75.	8.2	61
8	Ozonation of carbamazepine, diclofenac, sulfamethoxazole and trimethoprim and formation of major oxidation products. Desalination and Water Treatment, 2016, 57, 29340-29351.	1.0	61
9	Membrane fouling, chemical cleaning and separation performance assessment of a chlorine-resistant nanofiltration membrane for water recycling applications. Separation and Purification Technology, 2017, 189, 170-175.	7.9	61
10	Effects of membrane fouling on N-nitrosamine rejection by nanofiltration and reverse osmosis membranes. Journal of Membrane Science, 2013, 427, 311-319.	8.2	59
11	N-nitrosamine rejection by reverse osmosis membranes: A full-scale study. Water Research, 2013, 47, 6141-6148.	11.3	53
12	High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors. Water Research, 2018, 131, 45-51.	11.3	50
13	Rejection of small and uncharged chemicals of emerging concern by reverse osmosis membranes: The role of free volume space within the active skin layer. Separation and Purification Technology, 2013, 116, 426-432.	7.9	44
14	Effect of ciprofloxacin dosages on the performance of sponge membrane bioreactor treating hospital wastewater. Bioresource Technology, 2019, 273, 573-580.	9.6	42
15	Nutrient recovery and microalgae biomass production from urine by membrane photobioreactor at low biomass retention times. Science of the Total Environment, 2021, 785, 147423.	8.0	42
16	Rejection of trace organic chemicals by a hollow fibre cellulose triacetate reverse osmosis membrane. Desalination, 2015, 368, 69-75.	8.2	37
17	Removal of N-nitrosamines by an aerobic membrane bioreactor. Bioresource Technology, 2013, 141, 41-45.	9.6	36
18	Sodium hydroxide production from sodium carbonate and bicarbonate solutions using membrane electrolysis: A feasibility study. Separation and Purification Technology, 2014, 127, 70-76.	7.9	35

Τακαμιγο Fujioka

#	Article	IF	CITATIONS
19	New insights into the relationship between draw solution chemistry and trace organic rejection by forward osmosis. Journal of Membrane Science, 2019, 587, 117184.	8.2	34
20	Transport of small and neutral solutes through reverse osmosis membranes: Role of skin layer conformation of the polyamide film. Journal of Membrane Science, 2018, 554, 301-308.	8.2	33
21	Assessing the passage of small pesticides through reverse osmosis membranes. Journal of Membrane Science, 2020, 595, 117577.	8.2	30
22	An inline ion-exchange system in a chemiluminescence-based analyzer for direct analysis of N-nitrosamines in treated wastewater. Journal of Chromatography A, 2018, 1553, 51-56.	3.7	28
23	A rapid and reliable technique for N -nitrosodimethylamine analysis in reclaimed water by HPLC-photochemical reaction-chemiluminescence. Chemosphere, 2016, 161, 104-111.	8.2	26
24	N-nitrosamine rejection by reverse osmosis: Effects of membrane exposure to chemical cleaning reagents. Desalination, 2014, 343, 60-66.	8.2	25
25	In situ 3D characterization of monodispersed spherical particle deposition on microsieve using confocal laser scanning microscopy. Journal of Membrane Science, 2014, 454, 283-297.	8.2	25
26	Fouling control of a ceramic microfiltration membrane for direct sewer mining by backwashing with ozonated water. Separation and Purification Technology, 2015, 142, 268-273.	7.9	24
27	Real-Time Online Monitoring for Assessing Removal of Bacteria by Reverse Osmosis. Environmental Science and Technology Letters, 2018, 5, 389-393.	8.7	24
28	Biological performance and trace organic contaminant removal by a side-stream ceramic nanofiltration membrane bioreactor. International Biodeterioration and Biodegradation, 2016, 113, 49-56.	3.9	23
29	Rejection of small solutes by reverse osmosis membranes for water reuse applications: A pilot-scale study. Desalination, 2014, 350, 28-34.	8.2	22
30	Transport of <i>N</i> -Nitrosamines through a Reverse Osmosis Membrane: Role of Molecular Size and Nitrogen Atoms. Environmental Science and Technology Letters, 2019, 6, 44-48.	8.7	22
31	Potential of UV-B and UV-C irradiation in disinfecting microorganisms and removing N-nitrosodimethylamine and 1,4-dioxane for potable water reuse: A review. Chemosphere, 2022, 286, 131682.	8.2	22
32	Modelling the rejection of N-nitrosamines by a spiral-wound reverse osmosis system: Mathematical model development and validation. Journal of Membrane Science, 2014, 454, 212-219.	8.2	20
33	Rejection of trace organic chemicals by a nanofiltration membrane: the role of molecular properties and effects of caustic cleaning. Environmental Science: Water Research and Technology, 2015, 1, 846-854.	2.4	20
34	Submerged nanofiltration without pre-treatment for direct advanced drinking water treatment. Chemosphere, 2021, 265, 129056.	8.2	20
35	Role of membrane fouling substances on the rejection of N-nitrosamines by reverse osmosis. Water Research, 2017, 118, 187-195.	11.3	19
36	Online assessment of sand filter performance for bacterial removal in a full-scale drinking water treatment plant. Chemosphere, 2019, 229, 509-514.	8.2	19

Τακαμιγο Fujioka

#	Article	IF	CITATIONS
37	Boron as a Surrogate for <i>N</i> -Nitrosodimethylamine Rejection by Reverse Osmosis Membranes in Potable Water Reuse Applications. Environmental Science & Technology, 2013, 47, 6425-6430.	10.0	18
38	Degradation of N-Nitrosodimethylamine by UV-Based Advanced Oxidation Processes for Potable Reuse: a Short Review. Current Pollution Reports, 2017, 3, 79-87.	6.6	18
39	<i>Moringa oleifera</i> coagulation as pretreatment prior to microfiltration for membrane fouling mitigation. Environmental Science: Water Research and Technology, 2018, 4, 1604-1611.	2.4	17
40	Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water. International Journal of Environmental Research and Public Health, 2018, 15, 799.	2.6	16
41	Assessment of online bacterial particle counts for monitoring the performance of reverse osmosis membrane process in potable reuse. Science of the Total Environment, 2019, 667, 540-544.	8.0	16
42	Removal of Emerging Contaminants for Water Reuse byÂMembrane Technology. , 2016, , 217-247.		15
43	Effect of heat treatment on fouling resistance and the rejection of small and neutral solutes by reverse osmosis membranes. Water Science and Technology: Water Supply, 2015, 15, 510-516.	2.1	14
44	Simultaneous nitrification-denitrification using baffled osmotic membrane bioreactor-microfiltration hybrid system at different oxic-anoxic conditions for wastewater treatment. Journal of Environmental Management, 2020, 253, 109685.	7.8	14
45	Ultra-sensitive HPLC-photochemical reaction-luminol chemiluminescence method for the measurement of secondary amines after nitrosation. Analytica Chimica Acta, 2017, 952, 50-58.	5.4	13
46	Fouling substances causing variable rejection of a small and uncharged trace organic chemical by reverse osmosis membranes. Environmental Technology and Innovation, 2020, 17, 100576.	6.1	13
47	Membrane distillation for achieving high water recovery for potable water reuse. Chemosphere, 2022, 288, 132610.	8.2	13
48	Ozonation of N-Nitrosamines in the Reverse Osmosis Concentrate from Water Recycling Applications. Ozone: Science and Engineering, 2014, 36, 174-180.	2.5	12
49	Online monitoring of N-nitrosodimethylamine for the removal assurance of 1,4-dioxane and other trace organic compounds by reverse osmosis. Environmental Science: Water Research and Technology, 2018, 4, 2021-2028.	2.4	11
50	Integrity of reverse osmosis membrane for removing bacteria: new insight into bacterial passage. Environmental Science: Water Research and Technology, 2019, 5, 239-245.	2.4	11
51	Impact of heat modification conditions on the removal of N-nitrosodimethylamine by polyamide reverse osmosis membranes. Separation and Purification Technology, 2020, 247, 116921.	7.9	11
52	Validating the rejection of trace organic chemicals by reverse osmosis membranes using a pilot-scale system. Desalination, 2015, 358, 18-26.	8.2	10
53	Plugging nonporous polyamide membranes for enhanced rejection of small contaminants during advanced wastewater treatment. Separation and Purification Technology, 2020, 253, 117490.	7.9	10
54	Validation of a novel direct-injection chemiluminescence-based method for <i>N</i> -nitrosamine analysis in advanced-treated recycled water, drinking water, and wastewater. Environmental Science: Water Research and Technology, 2020, 6, 1106-1115.	2.4	10

#	Article	IF	CITATIONS
55	Fouling behavior and performance of a submerged flat-sheet nanofiltration membrane system for direct treatment of secondary wastewater effluent. Journal of Water Process Engineering, 2021, 41, 101991.	5.6	10
56	Degradation of N-nitrosamines and 1,4-dioxane using vacuum ultraviolet irradiation (UV254+185 nm or) Tj ET	Qq0 <u>8 9</u> rgE	BT /Qverlock 10
57	Near real-time N-nitrosodimethylamine monitoring in potable water reuse via online high-performance liquid chromatography-photochemical reaction-chemiluminescence. Environmental Science: Water Research and Technology, 2017, 3, 1032-1036.	2.4	9
58	Online monitoring of N-nitrosodimethylamine rejection as a performance indicator of trace organic chemical removal by reverse osmosis. Chemosphere, 2018, 200, 80-85.	8.2	9
59	Assessment of 265-nm UV-LED for direct photolysis and advanced oxidation of N-nitrosamines and 1,4-dioxane. Environmental Technology and Innovation, 2020, 20, 101147.	6.1	9
60	Biofouling Mitigation by Chloramination during Forward Osmosis Filtration of Wastewater. International Journal of Environmental Research and Public Health, 2018, 15, 2124.	2.6	8
61	Controlling biofouling and disinfection by-product formation during reverse osmosis treatment for seawater desalination. Desalination, 2020, 488, 114507.	8.2	8
62	Modification of a polyamide reverse osmosis membrane by heat treatment for enhanced fouling resistance. Water Science and Technology: Water Supply, 2013, 13, 1553-1559.	2.1	7
63	Assessing the passage of particles through polyamide reverse osmosis membranes. Separation and Purification Technology, 2019, 226, 8-12.	7.9	7
64	Diatomaceous earth incorporated floating magnetic beads for oil removal on water. Environmental Technology and Innovation, 2022, 25, 102120.	6.1	7
65	Biofouling control of a forward osmosis membrane during single-pass pre-concentration of wastewater. Chemosphere, 2020, 257, 127263.	8.2	6
66	Assessing bacterial infiltration through reverse osmosis membrane. Environmental Technology and Innovation, 2020, 19, 100818.	6.1	6
67	Dialysis as a new pre-treatment technique for online bacterial counting. Science of the Total Environment, 2020, 714, 136768.	8.0	5
68	Inhibitory effect of alkyl groups on N-nitrosamine formation from secondary and tertiary alkylamines with monochloramine. Environmental Technology and Innovation, 2021, 22, 101520.	6.1	5
69	A novel luminol chemiluminescence induced by photoexcited ketones: A selective determination method for acetone in wastewater. Talanta Open, 2021, 3, 100035.	3.7	5
70	Emerging investigators series: a steric pore-flow model to predict the transport of small and uncharged solutes through a reverse osmosis membrane. Environmental Science: Water Research and Technology, 2018, 4, 493-504.	2.4	3
71	A surrogate-based approach for trace organic chemical removal by a high-rejection reverse osmosis membrane. Science of the Total Environment, 2019, 696, 134002.	8.0	3
72	N-Nitrosodimethylamine Formation from Treatment of Seasonally and Spatially Varying Source Water. Water (Switzerland), 2019, 11, 2019.	2.7	3

Τακαμιγο Fujioka

#	Article	IF	CITATIONS
73	Application of stabilized hypobromite for controlling membrane fouling and N-nitrosodimethylamine formation. Chemosphere, 2020, 240, 124939.	8.2	3
74	Removal of N-nitrosodimethylamine for Potable Reuse: Reverse Osmosis Treatment and Monitoring Technologies. Energy, Environment, and Sustainability, 2019, , 167-185.	1.0	2
75	Pretreatment of Surface Waters and Wastewater by a Hemodiafilter for Online Bacterial Counting. ACS ES&T Water, 2021, 1, 101-107.	4.6	1
76	Online monitoring of bromate in treated wastewater: implications for potable water reuse. Environmental Science: Water Research and Technology, 0, , .	2.4	1
77	Online evaluation of bacterial cells in sand filter effluents during full-scale treatment of drinking water. Science of the Total Environment, 2022, 814, 152508.	8.0	1
78	Effects of Feed Solution Characteristics and Membrane Fouling on N-Nitrosamine Rejection by Reverse Osmosis Membranes. Procedia Engineering, 2012, 44, 1993-1995.	1.2	0
79	A facile technique for automatically counting odor-producing algae (Pseudanabaena sp.) in drinking water sources. Environmental Science: Water Research and Technology, 0, , .	2.4	0