Christopher J Kiely

List of Publications by Citations

Source: https://exaly.com/author-pdf/196929/christopher-j-kiely-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

161 81 328 27,933 h-index g-index citations papers 6.8 30,438 349 9.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
328	Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. <i>Science</i> , 2006 , 311, 362-5	33.3	1811
327	Identification of active gold nanoclusters on iron oxide supports for CO oxidation. <i>Science</i> , 2008 , 321, 1331-5	33.3	1308
326	Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. <i>Nature</i> , 2005 , 437, 1132-5	50.4	888
325	Designing bimetallic catalysts for a green and sustainable future. <i>Chemical Society Reviews</i> , 2012 , 41, 8099-139	58.5	820
324	Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. <i>Nature</i> , 1998 , 396, 444-446	50.4	649
323	Novel gold-dithiol nano-networks with non-metallic electronic properties. <i>Advanced Materials</i> , 1995 , 7, 795-797	24	641
322	Switching off hydrogen peroxide hydrogenation in the direct synthesis process. <i>Science</i> , 2009 , 323, 103	37 34 .13	629
321	Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. <i>Science</i> , 2011 , 331, 195-9	33.3	624
320	Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties. <i>Langmuir</i> , 1998 , 14, 5425-5429	4	539
319	Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2002 , 202, 175-186	5.1	514
318	Facile removal of stabilizer-ligands from supported gold nanoparticles. <i>Nature Chemistry</i> , 2011 , 3, 551-0	6 17.6	458
317	Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. <i>Chemical Communications</i> , 2002 , 2058-9	5.8	453
316	Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au B d catalysts. <i>Journal of Catalysis</i> , 2005 , 236, 69-79	7-3	452
315	Oxidation of glycerol using supported Pt, Pd and Au catalysts. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 1329-1336	3.6	413
314	Atomic-layered Au clusters on EMoC as catalysts for the low-temperature water-gas shift reaction. <i>Science</i> , 2017 , 357, 389-393	33.3	377
313	Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5129-33	16.4	376
312	Self-Organization of Nanosized Gold Particles. <i>Chemistry of Materials</i> , 1998 , 10, 922-926	9.6	347

(2007-2003)

311	Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 1917-1923	3.6	318
310	Palladium-tin catalysts for the direct synthesis of HDDwith high selectivity. <i>Science</i> , 2016 , 351, 965-8	33.3	314
309	Aqueous Au-Pd colloids catalyze selective CH oxidation to CHOH with O under mild conditions. <i>Science</i> , 2017 , 358, 223-227	33.3	299
308	Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. <i>Journal of Catalysis</i> , 2006 , 242, 71-81	7.3	289
307	Identification of single-site gold catalysis in acetylene hydrochlorination. <i>Science</i> , 2017 , 355, 1399-1403	33.3	285
306	Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1755		252
305	Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. <i>ACS Nano</i> , 2014 , 8, 3490-7	16.7	249
304	Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. <i>Journal of Contaminant Hydrology</i> , 2010 , 118, 96-104	3.9	239
303	High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to Evalerolactone. <i>Nature Communications</i> , 2015 , 6, 6540	17.4	232
302	Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. <i>ACS Nano</i> , 2012 , 6, 6284-92	16.7	225
301	The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7. Science, 2002, 295, 1882-	· 4 3.3	221
300	Unravelling structure sensitivity in CO2 hydrogenation over nickel. <i>Nature Catalysis</i> , 2018 , 1, 127-134	36.5	215
299	Selective oxidation of 5-hydroxymethyl-2-furfural using supported goldlopper nanoparticles. <i>Green Chemistry</i> , 2011 , 13, 2091	10	210
298	Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. <i>Chemical Communications</i> , 2002 , 2294-5	5.8	210
297	The role of a bilayer interfacial phase on liquid metal embrittlement. <i>Science</i> , 2011 , 333, 1730-3	33.3	204
296	Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 10136-9	16.4	196
295	Oxidation of Glycerol Using Supported Gold Catalysts. <i>Topics in Catalysis</i> , 2004 , 27, 131-136	2.3	193
294	Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism. <i>Journal of Catalysis</i> , 2007 , 250, 231-239	7.3	190

293	Direct synthesis of H(2)O(2) from H(2) and O(2) over gold, palladium, and gold-palladium catalysts supported on acid-pretreated TiO(2). <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 8512-5	16.4	187
292	Hard elastic carbon thin films from linking of carbon nanoparticles. <i>Nature</i> , 1996 , 383, 321-323	50.4	187
291	Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au-Pd catalysts prepared by sol immobilization. <i>Langmuir</i> , 2010 , 26, 16568-77	4	185
290	Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au-Pd catalysts. <i>Faraday Discussions</i> , 2008 , 138, 225-39; discussion 317-35, 433-4	3.6	184
289	Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. <i>Langmuir</i> , 2008 , 24, 4329-34	4	184
288	New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts. <i>Journal of Catalysis</i> , 2008 , 256, 108-125	7.3	176
287	Direct Synthesis of Hydrogen Peroxide from H2and O2Using Al2O3Supported Au P d Catalysts. <i>Chemistry of Materials</i> , 2006 , 18, 2689-2695	9.6	171
286	Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1280-4	16.4	169
285	Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. <i>Journal of Catalysis</i> , 2008 , 257, 190-198	7.3	168
284	Direct synthesis of hydrogen peroxide from H2 and O2 using Au P d/Fe2O3 catalysts. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4595		168
283	Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation. <i>Catalysis Today</i> , 2002 , 72, 133-144	5.3	167
282	Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition. <i>Accounts of Chemical Research</i> , 2013 , 46, 1759-72	24.3	155
281	Modified zeolite ZSM-5 for the methanol to aromatics reaction. <i>Catalysis Science and Technology</i> , 2012 , 2, 105-112	5.5	149
2 80	Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. <i>Accounts of Chemical Research</i> , 2014 , 47, 845-54	24.3	147
279	Supported Pd-Cu bimetallic nanoparticles that have high activity for the electrochemical oxidation of methanol. <i>Chemistry - A European Journal</i> , 2012 , 18, 4887-93	4.8	146
278	Ordered Colloidal Nanoalloys. <i>Advanced Materials</i> , 2000 , 12, 640-643	24	145
277	Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity. <i>Environmental Science & Environmental Science & Environmental</i>	4 ^{10.3}	140
276	Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells. <i>Chemical Communications</i> , 2005 , 3385-7	5.8	140

(2010-2007)

275	Molecular/electronic structureBurface acidity relationships of model-supported tungsten oxide catalysts. <i>Journal of Catalysis</i> , 2007 , 246, 370-381	7.3	139	
274	Oxidation of glycerol using gold-palladium alloy-supported nanocrystals. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 4952-61	3.6	137	
273	Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. <i>Chemical Reviews</i> , 2020 , 120, 3890-3938	68.1	131	
272	Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1921-30	3.6	130	
271	ZrO2 Is Preferred over TiO2 as Support for the Ru-Catalyzed Hydrogenation of Levulinic Acid to EValerolactone. <i>ACS Catalysis</i> , 2016 , 6, 5462-5472	13.1	127	
270	Identification of active Zr-WO(x) clusters on a ZrO2 support for solid acid catalysts. <i>Nature Chemistry</i> , 2009 , 1, 722-8	17.6	123	
269	Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 5142-53	3.6	119	
268	Au P d supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. <i>Green Chemistry</i> , 2008 , 10, 388-394	10	118	
267	Mercaptocarborane-capped gold nanoparticles: electron pools and ion traps with switchable hydrophilicity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 212-21	16.4	117	
266	Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. <i>ACS Nano</i> , 2012 , 6, 6600-13	16.7	114	
265	Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. <i>Dalton Transactions</i> , 2011 , 40, 3927-37	4.3	113	
264	Hydrogenation of but-2-enal over supported Au/ZnO catalysts. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 4113-4121	3.6	108	
263	Catalysis Science of Methanol Oxidation over Iron Vanadate Catalysts: Nature of the Catalytic Active Sites. <i>ACS Catalysis</i> , 2011 , 1, 54-66	13.1	107	
262	Aberration corrected analytical electron microscopy studies of sol-immobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. <i>Faraday Discussions</i> , 2011 , 152, 63-86; discussion 99-120	3.6	101	
261	Stable amorphous georgeite as a precursor to a high-activity catalyst. <i>Nature</i> , 2016 , 531, 83-7	50.4	100	
260	Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. <i>Faraday Discussions</i> , 2008 , 138, 337-51; discussion 421-34	3.6	98	
259	Fabrication of 2D Gold Nanowires by Self-Assembly of Gold Nanoparticles on Water Surfaces in the Presence of Surfactants. <i>Advanced Materials</i> , 2002 , 14, 1126	24	98	
258	Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde. <i>Journal of Catalysis</i> , 2010 , 275, 84-98	7:3	96	

257	Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles. <i>Chemistry - A European Journal</i> , 2011 , 17, 6524-32	4.8	94
256	Probing MetalBupport Interactions under Oxidizing and Reducing Conditions: In Situ Raman and Infrared Spectroscopic and Scanning Transmission Electron Microscopic R-ray Energy-Dispersive Spectroscopic Investigation of Supported Platinum Catalysts. <i>Journal of Physical Chemistry C</i> , 2008 ,	3.8	93
255	C60 Mediated Aggregation of Gold Nanoparticles. <i>Journal of the American Chemical Society</i> , 1998 , 120, 12367-12368	16.4	92
254	Au P d Nanoparticles Dispersed on Composite Titania/Graphene Oxide-Supports as a Highly Active Oxidation Catalyst. <i>ACS Catalysis</i> , 2015 , 5, 3575-3587	13.1	91
253	Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. <i>Nature Catalysis</i> , 2019 , 2, 873-881	36.5	91
252	The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2381-4	16.4	86
251	Relating n-pentane isomerization activity to the tungsten surface density of WO(x)/ZrO2. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13462-71	16.4	84
250	Selective oxidation of CO in the presence of H2, H2O and CO2 utilising Au/Fe2O3 catalysts for use in fuel cells. <i>Journal of Materials Chemistry</i> , 2006 , 16, 199-208		84
249	The effect of heat treatment on the performance and structure of carbon-supported Au P d catalysts for the direct synthesis of hydrogen peroxide. <i>Journal of Catalysis</i> , 2012 , 292, 227-238	7.3	83
248	Ceria prepared using supercritical antisolvent precipitation: a green support for goldpalladium nanoparticles for the selective catalytic oxidation of alcohols. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8619		82
247	Cation Ordering, Domain Growth, and Zinc Loss in the Microwave Dielectric Oxide Ba3ZnTa2O9-In Chemistry of Materials, 2003 , 15, 586-597	9.6	80
246	Electron-energy-loss spectroscopy characterization of the sp2 bonding fraction within carbon thin films. <i>Physical Review B</i> , 2000 , 62, 12628-12631	3.3	80
245	Characterisation of Variations in Vanadium Phosphate Catalyst Microstructure with Preparation Route. <i>Journal of Catalysis</i> , 1996 , 162, 31-47	7.3	80
244	Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. <i>Journal of Catalysis</i> , 2007 , 249, 208-219	7.3	79
243	The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. <i>Green Chemistry</i> , 2008 , 10, 1162	10	78
242	Low-temperature redox activity in co-precipitated catalysts: a comparison between gold and platinum-group metals. <i>Catalysis Today</i> , 2002 , 72, 107-113	5.3	77
241	Microstructural studies of the copper promoted iron oxide/chromia water-gas shift catalyst. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 3902-3908	3.6	77
240	The characterization of an SCS6/TiBAlaV MMC interphase. <i>Journal of Materials Research</i> , 1989 , 4, 327-33	3 5 .5	77

(2001-2008)

239	Microstructural Development and Catalytic Performance of Aul Manoparticles on Al2O3 Supports: The Effect of Heat Treatment Temperature and Atmosphere. <i>Chemistry of Materials</i> , 2008 , 20, 1492-1501	9.6	74
238	Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5. <i>Angewandte Chemie</i> , 2012 , 124, 5219-5223	3.6	73
237	Ruthenium Nanoparticles Supported on Carbon: An Active Catalyst for the Hydrogenation of Lactic Acid to 1,2-Propanediol. <i>ACS Catalysis</i> , 2015 , 5, 5047-5059	13.1	72
236	Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5981-5	16.4	72
235	Oxidation of glycerol to glycolate by using supported gold and palladium nanoparticles. <i>ChemSusChem</i> , 2009 , 2, 1145-51	8.3	72
234	Oxidation of benzyl alcohol using supported goldpalladium nanoparticles. <i>Catalysis Today</i> , 2011 , 163, 47-54	5.3	71
233	Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 5915-5920	3.6	71
232	The relationship between catalyst morphology and performance in the oxidative coupling of methane. <i>Journal of Catalysis</i> , 1992 , 135, 576-595	7:3	71
231	Comments on the nature of the active site of vanadium phosphate catalysts for butane oxidation. <i>Catalysis Today</i> , 1998 , 40, 273-286	5.3	70
230	Methyl Formate Formation from Methanol Oxidation Using Supported Gold P alladium Nanoparticles. <i>ACS Catalysis</i> , 2015 , 5, 637-644	13.1	69
229	Cobalt Catalysts Decorated with Platinum Atoms Supported on Barium Zirconate Provide Enhanced Activity and Selectivity for CO2 Methanation. <i>ACS Catalysis</i> , 2016 , 6, 2811-2818	13.1	69
228	Alkyl Isocyanide-Derivatized Platinum Nanoparticles. <i>Journal of the American Chemical Society</i> , 1999 , 121, 5573-5574	16.4	68
227	Oxidation of benzyl alcohol using supported goldpalladium nanoparticles. <i>Catalysis Today</i> , 2011 , 164, 315-319	5.3	67
226	Amorphous Vanadium Phosphate Catalysts Prepared Using Precipitation with Supercritical CO2 as an Antisolvent. <i>Journal of Catalysis</i> , 2002 , 208, 197-210	7.3	67
225	Viral-capsid-type vesicle-like structures assembled from M12L24 metal-organic hybrid nanocages. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5182-7	16.4	66
224	Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11087-99	16.4	65
223	LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. <i>Materials Science and Engineering C</i> , 2009 , 29, 1467-1479	8.3	65
222	Templated Gold Nanowire Self-Assembly on Carbon Substrates. <i>Advanced Materials</i> , 2001 , 13, 1800-180	3 4	63

221	Redispersion of Gold Supported on Oxides. ACS Catalysis, 2012, 2, 552-560	13.1	62
220	Base-free oxidation of glycerol using titania-supported trimetallic AuPdPt nanoparticles. <i>ChemSusChem</i> , 2014 , 7, 1326-34	8.3	61
219	Improvements in the X-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. <i>Microscopy and Microanalysis</i> , 2006 , 12, 515-26	0.5	61
218	The effect of catalyst preparation method on the performance of supported AuPd catalysts for the direct synthesis of hydrogen peroxide. <i>Green Chemistry</i> , 2010 , 12, 915	10	60
217	Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support. <i>ACS Catalysis</i> , 2016 , 6, 6623-6633	13.1	59
216	Reactivity studies of Au P d supported nanoparticles for catalytic applications. <i>Applied Catalysis A: General</i> , 2011 , 391, 400-406	5.1	59
215	High-activity Au/CuO᠒nO catalysts for the oxidation ofcarbon monoxide at ambient temperature. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 187-188		58
214	Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5275-80	11.5	57
213	Biomanufacturing of CdS quantum dots. <i>Green Chemistry</i> , 2015 , 17, 3775-3782	10	56
212	Investigation of the active species in the carbon-supported gold catalyst for acetylene hydrochlorination. <i>Catalysis Science and Technology</i> , 2016 , 6, 5144-5153	5.5	56
211	Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. <i>Journal of Catalysis</i> , 2012 , 285, 103-114	7.3	56
210	Effect of heat treatment on Au P d catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. <i>Catalysis Science and Technology</i> , 2013 , 3, 308-317	5.5	55
209	Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. <i>Faraday Discussions</i> , 2013 , 162, 365-78	3.6	55
208	Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. <i>Green Chemistry</i> , 2009 , 11, 1037	10	55
207	Direct evidence of active surface reconstruction during oxidative dehydrogenation of propane over VMgO catalyst. <i>Journal of Catalysis</i> , 1998 , 177, 325-334	7.3	55
206	Nature of Catalytically Active Sites in the Supported WO3/ZrO2 Solid Acid System: A Current Perspective. <i>ACS Catalysis</i> , 2017 , 7, 2181-2198	13.1	54
205	A TEM study of the crystallography and defect structures of single crystal and polycrystalline copper indium diselenide. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1991 , 63, 1249-1273		54
204	Improved method of preparation of vanadium phosphate catalysts. <i>Catalysis Today</i> , 1997 , 33, 161-171	5.3	53

(2013-2018)

203	Elucidating the Role of CO2 in the Soft Oxidative Dehydrogenation of Propane over Ceria-Based Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 3454-3468	13.1	52	
202	Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au P d nanoparticles. <i>Catalysis Today</i> , 2013 , 203, 146-152	5.3	52	
201	Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. <i>Current Opinion in Solid State and Materials Science</i> , 2012 , 16, 10-22	12	52	
200	The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. <i>Catalysis Today</i> , 2013 , 203, 139-145	5.3	51	
199	Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. <i>Catalysis Letters</i> , 2012 , 142, 1049-1056	2.8	51	
198	Selective Oxidation of Glycerol by Highly Active Bimetallic Catalysts at Ambient Temperature under Base-Free Conditions. <i>Angewandte Chemie</i> , 2011 , 123, 10318-10321	3.6	51	
197	Structural transformation sequences occurring during the activation of vanadium phosphorus oxide catalysts. <i>Faraday Discussions</i> , 1996 , 105, 103	3.6	51	
196	Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. <i>Nature Communications</i> , 2016 , 7, 12905	17.4	50	
195	Influence of methyl halide treatment on gold nanoparticles supported on activated carbon. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8912-6	16.4	50	
194	Oxidation of benzyl alcohol by using gold nanoparticles supported on ceria foam. <i>ChemSusChem</i> , 2012 , 5, 125-31	8.3	49	
193	Gold Catalysis: A Reflection on Where We are Now. Catalysis Letters, 2015, 145, 71-79	2.8	48	
192	Fundamental Sintering Studies of 2-Dimensional Gold Nanoparticle Arrays. <i>Microscopy and Microanalysis</i> , 2004 , 10, 384-385	0.5	47	
191	Facile synthesis of precious-metal single-site catalysts using organic solvents. <i>Nature Chemistry</i> , 2020 , 12, 560-567	17.6	46	
190	Deactivation of a Single-Site Gold-on-Carbon Acetylene Hydrochlorination Catalyst: An X-ray Absorption and Inelastic Neutron Scattering Study. <i>ACS Catalysis</i> , 2018 , 8, 8493-8505	13.1	43	
189	Oxidation of Methane to Methanol with Hydrogen Peroxide Using Supported GoldPalladium Alloy Nanoparticles. <i>Angewandte Chemie</i> , 2013 , 125, 1318-1322	3.6	43	
188	Gold, palladium and goldpalladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. <i>Catalysis Science and Technology</i> , 2012 , 2, 1914	5.5	43	
187	Mechanistic Insight into the Interaction Between a Titanium Dioxide Photocatalyst and Pd Cocatalyst for Improved Photocatalytic Performance. <i>ACS Catalysis</i> , 2016 , 6, 4239-4247	13.1	41	
186	Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide. <i>Catalysis Science and Technology</i> , 2013 , 3, 812-818	5.5	41	

185	Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. <i>Journal of Catalysis</i> , 2012 , 296, 55-64	7.3	41
184	Tuning the electronic and molecular structures of catalytic active sites with titania nanoligands. Journal of the American Chemical Society, 2009 , 131, 680-7	16.4	41
183	Solvothermal synthesis of ultrasmall tungsten oxide nanoparticles. <i>Langmuir</i> , 2012 , 28, 17771-7	4	40
182	Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pre-treatment. <i>Chemical Science</i> , 2014 , 5, 3603-3616	9.4	39
181	Amorphous Vanadium Phosphate Catalysts from Supercritical Antisolvent Precipitation. <i>Journal of Catalysis</i> , 2001 , 197, 232-235	7.3	39
180	Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. <i>Chemistry - A European Journal</i> , 2014 , 20, 1701-10	4.8	38
179	CBE growth of GaAs/GaAs, GaAs/Si and AlGaAs/GaAs using TEG, AsH3 and amine-alane precursors. Journal of Crystal Growth, 1992 , 120, 206-211	1.6	38
178	Structural characterisation of a VMgO catalyst used in the oxidative dehydrogenation of propane. <i>Catalysis Letters</i> , 1999 , 57, 121-128	2.8	37
177	Activation and Deactivation of Gold/Ceria-Zirconia in the Low-Temperature Water-Gas Shift Reaction. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16037-16041	16.4	36
176	Selective photocatalytic oxidation of benzene for the synthesis of phenol using engineered Au-Pd alloy nanoparticles supported on titanium dioxide. <i>Chemical Communications</i> , 2014 , 50, 12612-4	5.8	35
175	Selective catalytic oxidation using supported gold-platinum and palladium-platinum nanoalloys prepared by sol-immobilisation. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10636-44	3.6	35
174	Energetics of misfit- and threading-dislocation arrays in heteroepitaxial films. <i>Physical Review B</i> , 1991 , 44, 1154-1162	3.3	35
173	Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. <i>Chemical Science</i> , 2012 , 3, 2965	9.4	34
172	Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. <i>Chemical Communications</i> , 2008 , 1707-9	5.8	34
171	Biomineralization of PbS and PbSIIdS corelinell nanocrystals and their application in quantum dot sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6107-6115	13	34
170	Liquid phase oxidation of cyclohexane using bimetallic Au P d/MgO catalysts. <i>Applied Catalysis A: General</i> , 2015 , 504, 373-380	5.1	33
169	Supported bimetallic nano-alloys as highly active catalysts for the one-pot tandem synthesis of imines and secondary amines from nitrobenzene and alcohols. <i>Catalysis Science and Technology</i> , 2016 , 6, 5473-5482	5.5	33
168	Structural investigation of MoS2coreBhell nanoparticles formed by an arc discharge in water. <i>Nanotechnology</i> , 2003 , 14, 913-917	3.4	33

Electron microscopy studies of vanadium phosphorus oxide catalysts derived from VOPO4DH2O. <i>Catalysis Letters</i> , 1995 , 33, 357-368	2.8	31	
Electron microscopy studies of the thermal stability of gold nanoparticle arrays 2009 , 42, 133-143		30	
High Resolution Electron Microscopy Study of Nanocubes and Polyhedral Nanocrystals of Cerium(IV) Oxide. <i>Chemistry of Materials</i> , 2013 , 25, 2028-2034	9.6	29	
Crystallisation of indium-tin-oxide (ITO) thin films. <i>Renewable Energy</i> , 2004 , 29, 2037-2051	8.1	29	
Enhanced Au?Pd Activity in the Direct Synthesis of Hydrogen Peroxide using Nanostructured Titanate Nanotube Supports. <i>ChemCatChem</i> , 2014 , 6, 2531-2534	5.2	28	
Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. <i>Catalysis Science and Technology</i> , 2012 , 2, 97-104	5.5	28	
Generation and deposition of fullerene- and nanotube-rich carbon thin films. <i>Philosophical Magazine Letters</i> , 1997 , 75, 329-335	1	28	
Role of Defects and Growth Directions in the Formation of Periodically Twinned and Kinked Unseeded Germanium Nanowires. <i>Crystal Growth and Design</i> , 2011 , 11, 3266-3272	3.5	27	
Supported nickel-rhenium catalysts for selective hydrogenation of methyl esters to alcohols. <i>Chemical Communications</i> , 2017 , 53, 9761-9764	5.8	26	
The Effect of Bromide Pretreatment on the Performance of Supported Au P d Catalysts for the Direct Synthesis of Hydrogen Peroxide. <i>ChemCatChem</i> , 2009 , 1, 479-484	5.2	26	
Formation and subsequent inclusion of fullerene-like nanoparticles in nanocomposite carbon thin films. <i>Carbon</i> , 2004 , 42, 1651-1656	10.4	26	
Enhanced Selective Oxidation of Benzyl Alcohol via In Situ H2O2 Production over Supported Pd-Based Catalysts. <i>ACS Catalysis</i> , 2021 , 11, 2701-2714	13.1	26	
Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide. <i>Chemistry - A European Journal</i> , 2017 , 23, 11834-11842	4.8	25	
A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. <i>Chemical Science</i> , 2017 , 8, 2436-2447	9.4	25	
Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation. <i>Catalysis Today</i> , 2018 , 317, 12-20	5.3	25	
Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. <i>Catalysis Science and Technology</i> , 2011 , 1, 747	5.5	25	
On the microstructure and interfacial structure of InSb layers grown on GaAs(100) by molecular beam epitaxy. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1989 , 60, 321-337		25	
Synthesis of highly uniform and composition-controlled gold-palladium supported nanoparticles in continuous flow. <i>Nanoscale</i> , 2019 , 11, 8247-8259	7.7	24	
	Electron microscopy studies of the thermal stability of gold nanoparticle arrays 2009, 42, 133-143 High Resolution Electron Microscopy Study of Nanocubes and Polyhedral Nanocrystals of Cerium(IV) Oxide. Chemistry of Materials, 2013, 25, 2028-2034 Crystallisation of indium-tin-oxide (ITO) thin films. Renewable Energy, 2004, 29, 2037-2051 Enhanced Au?Pd Activity in the Direct Synthesis of Hydrogen Peroxide using Nanostructured Titanate Nanotube Supports. ChemCatChem, 2014, 6, 2531-2534 Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science and Technology, 2012, 2, 97-104 Generation and deposition of fullerene- and nanotube-rich carbon thin films. Philosophical Magazine Letters, 1997, 75, 329-335 Role of Defects and Growth Directions in the Formation of Periodically Twinned and Kinked Unseeded Germanium Nanowires. Crystal Growth and Design, 2011, 11, 3266-3272 Supported nickel-rhenium catalysts for selective hydrogenation of methyl esters to alcohols. Chemical Communications, 2017, 53, 9761-9764 The Effect of Bromide Pretreatment on the Performance of Supported AuPd Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem, 2009, 1, 479-484 Formation and subsequent inclusion of fullerene-like nanoparticles in nanocomposite carbon thin films. Carbon, 2004, 42, 1651-1656 Enhanced Selective Oxidation of Benzyl Alcohol via in Situ H2O2 Production over Supported Pd-Based Catalysts. ACS Catalysis, 2021, 11, 2701-2714 Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide. Chemistry - A European Journal, 2017, 23, 11834-11842 A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science, 2017, 8, 2436-2447 Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation. Catalysis Today, 2018, 317, 12-20 Selective oxidation of alkenes using graphite-supported gold-palladium	Electron microscopy studies of the thermal stability of gold nanoparticle arrays 2009, 42, 133-143 High Resolution Electron Microscopy Study of Nanocubes and Polyhedral Nanocrystals of Cerium(IV) Oxide. Chemistry of Materials, 2013, 25, 2028-2034 Crystallisation of indium-tin-oxide (ITO) thin films. Renewable Energy, 2004, 29, 2037-2051 8.1 Enhanced Au?Pd Activity in the Direct Synthesis of Hydrogen Peroxide using Nanostructured Titanate Nanocube Supports. ChemCatChem, 2014, 6, 2531-2534 Oxidative esterification of 1,2-propanedial using gold and gold-palladium supported nanoparticles. Catalysis Science and Technology, 2012, 2, 97-104 Generation and deposition of fullerene- and nanotube-rich carbon thin films. Philosophical Magazine Letters, 1997, 75, 329-335 Role of Defects and Growth Directions in the Formation of Periodically Twinned and Kinked Unseeded Germanium Nanowires. Crystal Growth and Design, 2011, 11, 3266-3272 Supported nickel-rhenium catalysts for selective hydrogenation of methyl esters to alcohols. Chemical Communications, 2017, 53, 9761-9764 The Effect of Bromide Pretreatment on the Performance of Supported AuPd Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem, 2009, 1, 479-484 Formation and subsequent inclusion of fullerene-like nanoparticles in nanocomposite carbon thin films. Carbon, 2004, 42, 1651-1656 Enhanced Selective Oxidation of Benzyl Alcohol via In Situ H2O2 Production over Supported Pd-Based Catalysts. ACS Catalysis, 2021, 11, 2701-2714 Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide. Chemistry - A European Journal, 2017, 23, 11834-11842 A new class of Cu/ToO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science, 2017, 8, 2436-2447 Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation. Catalysis Today, 2018, 317, 12-20 Selective oxidation of alkenes using graphite-supported gold-pall	Electron microscopy studies of the thermal stability of gold nanoparticle arrays 2009, 42, 133-143 High Resolution Electron Microscopy Study of Nanocubes and Polyhedral Nanocrystals of Cerium(IV) Oxide. Chemistry of Materials, 2013, 25, 2028-2034 Crystallisation of indium-tin-oxide (ITO) thin films. Renewable Energy, 2004, 29, 2037-2051 Enhanced Au?Pd Activity in the Direct Synthesis of Hydrogen Peroxide using Nanostructured Titanate Nanotube Supports. ChemCatChem, 2014, 6, 2531-2534 Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science and Technology, 2012, 2, 97-104 Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science and Technology, 2012, 2, 97-104 Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science and Technology, 2012, 2, 97-104 Ceneration and deposition of fullerene- and nanotube-rich carbon thin films. Philosophical Magazine Letters, 1997, 75, 329-335 Role of Defects and Growth Directions in the Formation of Periodically Twinned and Kinked Universeded Germanium Nanowires. Crystal Growth and Design, 2011, 11, 3266-3272 Supported nickel-rhenium catalysts for selective hydrogenation of methyl esters to alcohols. Chemical Communications, 2017, 53, 9761-9764 The Effect of Bromide Pretreatment on the Performance of Supported AuPd Catalysts for the Direct Synthesis of Hydrogen Peroxide. Chem.CatChem, 2009, 1, 479-484 Formation and subsequent inclusion of fullerene-like nanoparticles in nanocomposite carbon thin films. Carbon, 2004, 42, 1651-1656 Enhanced Selective Oxidation of Eenzyl Alcohol via In Situ H2O2 Production over Supported Pelased Catalysts, ACS Catalysis, 2021, 11, 2701-2714 Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide. Chemistry - A European Journal, 2017, 23, 11834-11842 A new class of Cu/ZnO catalysts derived from zincian georgeite precursors p

149	A microstructural and compositional analysis of CuInSe2 ingots grown by the vertical Bridgman technique. <i>Journal of Crystal Growth</i> , 1997 , 171, 415-424	1.6	24
148	n-Butane oxidation using catalysts prepared by treatment of VOPO4[2H2O with octanol. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 137-142		24
147	Low temperature selective oxidation of methane using gold-palladium colloids. <i>Catalysis Today</i> , 2020 , 342, 32-38	5.3	24
146	High activity redox catalysts synthesized by chemical vapor impregnation. ACS Nano, 2014, 8, 957-69	16.7	23
145	Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO412H2O to VOHPO410.5H2O. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16136		23
144	StructureEctivity relationships for Co- and Fe-promoted vanadium phosphorus oxide catalysts. New Journal of Chemistry, 2001 , 25, 125-130	3.6	23
143	Enzymatic biomineralization of biocompatible CuInS, (CuInZn)S and CuInS/ZnS core/shell nanocrystals for bioimaging. <i>Nanoscale</i> , 2017 , 9, 9340-9351	7.7	22
142	Effect of structure of the redox molecular sieve TS-1 on the oxidation of phenol, crotyl alcohol and norbornylene. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 2671-8	3.6	22
141	Nanocrystalline gold and goldpalladium as effective catalysts for selective oxidation. <i>Journal of Materials Research</i> , 2007 , 22, 831-837	2.5	21
140	Influence of the Reaction Atmosphere on the Characteristics and Performance of VPO Catalysts. <i>Journal of Catalysis</i> , 2000 , 196, 1-7	7-3	21
139	On the atomic structure of the Al-GaAs(100) interface. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1989 , 59, 1-29		20
138	Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts. <i>Faraday Discussions</i> , 2011 , 152, 367-79; discussion 393-413	3.6	19
137	The effect of heating rate variations on secondary phases in YBa2Cu3O7\(\textit{IMaterials Letters}\), 1992 , 13, 357-362	3.3	19
136	Electron diffraction from epitaxial crystals convergent-beam electron diffraction of the interface structure for NiSi2/Si and Al/GaAs. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1989 , 60, 161-175		19
135	The effect of temperature on the chemistry and morphology of the interphase in an SCS6/TiBAlaV metal matrix composite. <i>Journal of Materials Research</i> , 1990 , 5, 1435-1442	2.5	19
134	The direct synthesis of hydrogen peroxide using platinum promoted goldpalladium catalysts. <i>Catalysis Science and Technology</i> , 2014 , 4, 3244-3250	5.5	18
133	Molybdenum oxide model catalysts and vanadium phosphates as actual catalysts for understanding heterogeneous catalytic partial oxidation reactions: A contribution by Jean-Claude Volta. <i>Catalysis Today</i> , 2013 , 217, 57-64	5.3	18
132	Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. <i>Journal of Catalysis</i> , 2011 , 283, 161-167	7-3	18

(2011-2002)

131	Mechanisms of visible photoluminescence from nanoscale silicon cones. <i>Journal of Applied Physics</i> , 2002 , 91, 3294-3298	2.5	18	
130	Methane Oxidation to Methanol in Water. <i>Accounts of Chemical Research</i> , 2021 , 54, 2614-2623	24.3	18	
129	Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. <i>Catalysis Science and Technology</i> , 2018 , 8, 5848-5857	5.5	18	
128	Direct Single-Enzyme Biomineralization of Catalytically Active Ceria and Ceria-Zirconia Nanocrystals. <i>ACS Nano</i> , 2017 , 11, 3337-3346	16.7	17	
127	Enzymatic synthesis of supported CdS quantum dot/reduced graphene oxide photocatalysts. <i>Green Chemistry</i> , 2019 , 21, 4046-4054	10	17	
126	Biomineralized CdS Quantum Dot Nanocrystals: Optimizing Synthesis Conditions and Improving Functional Properties by Surface Modification. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 11235-11244	3.9	17	
125	Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. <i>Catalysis Today</i> , 2011 , 178, 47-50	5.3	17	
124	Surface alteration of (VO)2P2O7 by Bb2O4 as a route to control the n-butane selective oxidation. <i>Applied Catalysis A: General</i> , 2001 , 210, 121-136	5.1	17	
123	Study of the Structural Modifications Induced by Reducing Treatments on a Pd/Ce0.8Tb0.2O2-x/La2O3Al2O3Catalyst by Means of X-ray Diffraction and Electron Microscopy Techniques. <i>Chemistry of Materials</i> , 2002 , 14, 1405-1410	9.6	17	
122	Relationship between morphology and catalytic performance of lithium and gold doped magnesium oxide catalysts for the oxidative coupling of methane. <i>Catalysis Today</i> , 1992 , 13, 401-407	5.3	17	
121	Ambient temperature aqueous synthesis of ultrasmall copper doped ceria nanocrystals for the water gas shift and carbon monoxide oxidation reactions. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 244-	- 23 5	17	
120	Benzyl alcohol oxidation with Pd-Zn/TiO: computational and experimental studies. <i>Science and Technology of Advanced Materials</i> , 2019 , 20, 367-378	7.1	16	
119	Structure/Function Relationships in Nd2O3-Doped MgO Catalysts for the Methane Coupling Reaction. <i>Journal of Catalysis</i> , 1997 , 167, 77-91	7.3	16	
118	Vanadium(V) phosphate prepared using solvent-free method. <i>Catalysis Letters</i> , 2001 , 72, 99-105	2.8	16	
117	A structural study of haematite samples prepared from sulfated goethite precursors: the generation of axial mesoporous voids. <i>Journal of Materials Chemistry</i> , 2000 , 10, 761-766		16	
116	Molybdenum blue nano-rings: an effective catalyst for the partial oxidation of cyclohexane. <i>Catalysis Science and Technology</i> , 2015 , 5, 217-227	5.5	15	
115	Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. <i>Catalysis Science and Technology</i> , 2020 , 10, 4635-4644	5.5	15	
114	The significance of the order of impregnation on the activity of vanadia promoted palladium-alumina catalysts for propane total oxidation. <i>Catalysis Science and Technology</i> , 2011 , 1, 1367	5.5	15	

113	Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. <i>Applied Catalysis A: General</i> , 2010 , 376, 47-55	5.1	15
112	Effects of cobalt additive on amorphous vanadium phosphate catalysts prepared using precipitation with supercritical CO2 as an antisolvent. <i>New Journal of Chemistry</i> , 2002 , 26, 1811-1816	3.6	15
111	Epitaxial growth of Ge films on GaAs (285월15 °C) by laser photochemical vapor deposition. <i>Applied Physics Letters</i> , 1988 , 52, 1710-1712	3.4	15
110	Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. <i>Nature Catalysis</i> ,	36.5	15
109	Highly Active Gold and Gold P alladium Catalysts Prepared by Colloidal Methods in the Absence of Polymer Stabilizers. <i>ChemCatChem</i> , 2017 , 9, 2914-2918	5.2	14
108	Nano/macroporous monolithic scaffolds prepared by the solgel method. <i>Journal of Sol-Gel Science and Technology</i> , 2009 , 51, 42-47	2.3	14
107	An HREM study of the WO3/TiO2 monolayer catalyst system. Proposals for the overlayer structure. <i>Catalysis Letters</i> , 1996 , 39, 219-231	2.8	14
106	Structural aspects of magnesium oxide catalysts for the oxidative coupling of methane. <i>Catalysis Today</i> , 1991 , 10, 259-266	5.3	14
105	Characterization of mismatched InAs?GaAs heterostructures grown by metalorganic chemical vapor deposition. <i>Journal of Crystal Growth</i> , 1988 , 93, 512-516	1.6	14
104	Hydrated Electron Generation by Excitation of Copper Localized Surface Plasmon Resonance. Journal of Physical Chemistry Letters, 2019 , 10, 1743-1749	6.4	13
103	Improving the Selectivity of Photocatalytic NOx Abatement through Improved O2 Reduction Pathways Using Ti0.909W0.091O2Nx Semiconductor Nanoparticles: From Characterization to Photocatalytic Performance. ACS Catalysis, 2018, 8, 6927-6938	13.1	13
102	Photocatalytic hydrogen production by reforming of methanol using Au/TiO2, Ag/TiO2 and Au-Ag/TiO2 catalysts 2015 , 1, 35-43		13
101	Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 17395-404	3.6	13
100	Stacking fault structures in melt-processed YBa2Cu3O7-Buperconductors. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1994 , 69, 729-739		13
99	Microstructural studies of epitaxial Ge films grown on [100] GaAs by laser photochemical vapor deposition. <i>Journal of Applied Physics</i> , 1989 , 65, 3883-3895	2.5	13
98	GoldBalladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. <i>Catalysis Science and Technology</i> , 2020 , 10, 5935-5944	5.5	13
97	A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. <i>Nature Catalysis</i> ,	36.5	13
96	Involvement of Surface-Bound Radicals in the Oxidation of Toluene Using Supported Au-Pd Nanoparticles. <i>Angewandte Chemie</i> , 2012 , 124, 6083-6087	3.6	12

(2001-2000)

95	n-Butane oxidation using VO(H2PO4)2 as catalyst derived from an aldehyde/ketone based preparation method. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 4999-5006	3.6	12
94	Single Enzyme Direct Biomineralization of CdSe and CdSe-CdS Core-Shell Quantum Dots. <i>ACS Applied Materials & Discrete Section</i> , 13430-13439	9.5	11
93	The Direct Synthesis of Hydrogen Peroxide Using Platinum-Promoted Gold P alladium Catalysts. <i>Angewandte Chemie</i> , 2014 , 126, 2413-2416	3.6	11
92	The Low-Temperature Oxidation of Propane by using H2O2 and Fe/ZSM-5 Catalysts: Insights into the Active Site and Enhancement of Catalytic Turnover Frequencies. <i>ChemCatChem</i> , 2017 , 9, 642-650	5.2	11
91	Selective formation of chloroethane by the hydrochlorination of ethene using zinc catalysts. <i>Journal of Catalysis</i> , 2007 , 252, 23-29	7.3	11
90	Inversion of enantioselectivity for the hydrogenation of ethyl pyruvate in the gas-phase over Pt/SiO2 modified with derivatives of hydroquinidine. <i>Journal of Catalysis</i> , 2006 , 243, 165-170	7.3	11
89	Probing possible structure sensitivity in the exchange of isotopic oxygen with the surface of MgO. <i>Journal of Catalysis</i> , 2005 , 234, 14-23	7.3	11
88	Au-Pd Separation Enhances Bimetallic Catalysis of Alcohol Oxidation <i>Nature</i> , 2022 ,	50.4	11
87	Template-Induced Structuring and Tunable Polymorphism of Three-Dimensionally Ordered Mesoporous (3DOm) Metal Oxides. <i>Langmuir</i> , 2017 , 33, 6601-6610	4	10
86	Homocoupling of Phenylboronic Acid using Atomically Dispersed Gold on Carbon Catalysts: Catalyst Evolution Before Reaction. <i>ChemCatChem</i> , 2018 , 10, 1853-1859	5.2	10
85	Catalysis using colloidal-supported gold-based nanoparticles. <i>Applied Petrochemical Research</i> , 2014 , 4, 85-94	1.9	10
84	Influence of Methyl Halide Treatment on Gold Nanoparticles Supported on Activated Carbon. <i>Angewandte Chemie</i> , 2011 , 123, 9074-9078	3.6	10
83	The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. <i>Catalysis Today</i> , 2010 , 157, 211-216	5.3	10
82	Sintering of thin film nanocrystalline titania l in oxide composites. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 2225-2232	6	10
81	Gallium-doped VPO catalysts for the oxidation of n-butane to maleic anhydride. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4348		10
80	Synthesis of novel chiral quaternary phosphonium fluorides: reagents for simple asymmetric nucleophilic fluorination reactions. <i>Journal of Fluorine Chemistry</i> , 2001 , 108, 47-50	2.1	10
79	In situ laser Raman spectroscopy studies of the transformation of VOHPO4D.5H2O and (VO)2P2O7. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 4122-4128	3.6	10
78	Structural transformation sequence occurring during the activation under n-butanelir of a cobalt-doped vanadium phosphate hemihydrate precursor for mild oxidation to maleic anhydride. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 2143-2147	3.6	10

77	NH3 as a photosensitizer in the epitaxial growth of Ge on GaAs by laser photochemical vapor deposition. <i>Applied Physics Letters</i> , 1989 , 55, 65-67	3.4	10
76	Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application. <i>Green Chemistry</i> ,	10	10
75	Dealumination of mordenite catalysts using a low concentration of steam. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 3593-3598		9
74	Promotion of vanadium phosphate catalysts using gallium compounds: effect of low Ga/V molar ratios. <i>Journal of Molecular Catalysis A</i> , 2004 , 220, 85-92		9
73	Calculation of the bandgap and of the type of interband transitions in tetrahedral amorphous carbon using electron energy loss spectroscopy. <i>Diamond and Related Materials</i> , 2004 , 13, 1408-1411	3.5	9
72	Magnetism in oxide chains bridged with the hydride anion: LaSrCoO3H0.7 studied using muon-spin rotation. <i>Physica B: Condensed Matter</i> , 2003 , 326, 527-531	2.8	9
71	Calculation of the electronic structure of carbon films using electron energy loss spectroscopy. <i>Ultramicroscopy</i> , 2001 , 90, 39-45	3.1	9
70	Comparison of vanadium phosphate catalysts derived from VOPO412H2O prepared from H3PO4 and H4P2O7. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 4606-4613	3.6	9
69	The effects of ion implantation on the microstructure of CuInSe2 single crystals. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1996 , 73, 1131-1	145	9
68	Continuous Flow Synthesis of Bimetallic AuPd Catalysts for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. <i>ChemNanoMat</i> , 2020 , 6, 420-426	3.5	9
67	The Role of Copper Speciation in the Low Temperature Oxidative Upgrading of Short Chain Alkanes over Cu/ZSM-5 Catalysts. <i>ChemPhysChem</i> , 2018 , 19, 469-478	3.2	9
66	Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification. <i>Dalton Transactions</i> , 2014 , 43, 14976-82	4.3	8
65	Single enzyme direct biomineralization of ZnS, ZnxCd1\(\mathbb{N}\)Sand ZnxCd1\(\mathbb{N}\)Sand quantum confined nanocrystals. RSC Advances, 2017, 7, 38490-38497	3.7	8
64	Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcohol reduction of VOPO4DH2O. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5310		8
63	Unexpected inversion of enantioselectivity during the hydrogenation of ethyl pyruvate using hydroquinine and hydroquinidine modified Pt/Al2O3. <i>Catalysis Letters</i> , 2006 , 110, 135-138	2.8	8
62	Interfacial Stabilization of Metastable TiO2 Films. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 4434-4442	3.8	7
61	Gold catalysis: helping create a sustainable future. <i>Applied Petrochemical Research</i> , 2012 , 2, 7-14	1.9	7
60	Structure/Function Relationships in MgO-Doped Nd2O3Catalysts for the Methane Coupling Reaction. <i>Journal of Catalysis</i> , 1998 , 173, 383-398	7.3	7

(1992-2005)

59	Study of the electronic structure of carbon materials near the bandgap using electron energy loss spectroscopy. <i>Diamond and Related Materials</i> , 2005 , 14, 1522-1528	3.5	7	
58	Characterisation of thin films containing Au and Pd nanoparticles by grazing-incidence X-ray diffraction and related methods. <i>Journal of Alloys and Compounds</i> , 2001 , 328, 248-252	5.7	7	
57	Self-assembly of size-selected colloidal metal clusters: Crystalline descriptions of non-close-packed arrangements. <i>Philosophical Magazine Letters</i> , 1999 , 79, 569-574	1	7	
56	The effects of post-deposition annealing on the microstructure of electron-beam evaporated indium tin oxide thin films. <i>Renewable Energy</i> , 1994 , 5, 209-211	8.1	7	
55	Sulfur Promotion in Au/C Catalyzed Acetylene Hydrochlorination. Small, 2021, 17, e2007221	11	7	
54	Novel radical tandem 1,6-enynes thioacylation/cyclization: AuPd nanoparticles catalysis versus thermal activation as a function of the substrate specificity. <i>Tetrahedron</i> , 2014 , 70, 9635-9643	2.4	6	
53	Evaluation of the Corrosion Resistance of Fell or Alloys in Simulated Low NO x Environments. <i>Oxidation of Metals</i> , 2009 , 72, 87-107	1.6	6	
52	Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. <i>ChemCatChem</i> , 2010 , 2, 443-452	5.2	6	
51	Adventures with vanadium phosphate catalysts: Reflections on a long standing collaboration with J.C. Volta. <i>Applied Catalysis A: General</i> , 2007 , 325, 194-197	5.1	6	
50	Low-resistance nonalloyed ohmic contacts on p-type GaAs using GaSb/GaAs strained-layer superlattices. <i>Applied Physics Letters</i> , 1989 , 55, 570-571	3.4	6	
49	Tailored Coupling of Biomineralized CdS Quantum Dots to rGO to Realize Ambient Aqueous Synthesis of a High-Performance Hydrogen Evolution Photocatalyst. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 42773-42780	9.5	6	
48	Low temperature aqueous synthesis of size-controlled nanocrystals through size focusing: a quantum dot biomineralization case study. <i>Nanoscale</i> , 2018 , 10, 20785-20795	7.7	6	
47	Highly efficient catalytic production of oximes from ketones using in situ-generated HO <i>Science</i> , 2022 , 376, 615-620	33.3	6	
46	The Key Role of Nanocasting in Gold-based Fe2O3 Nanocasted Catalysts for Oxygen Activation at the Metal-support Interface. <i>ChemCatChem</i> , 2019 , 11, 1915-1927	5.2	5	
45	In Situ Biomineralization of CuZnSnS Nanocrystals within TiO-Based Quantum Dot Sensitized Solar Cell Anodes. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 45656-45664	9.5	5	
44	Assessment of a nanocrystal 3-D morphology by the analysis of single HAADF-HRSTEM images. <i>Nanoscale Research Letters</i> , 2013 , 8, 475	5	5	
43	First Results from the Aberration-Corrected JEOL 2200FS-AC STEM/TEM. <i>Microscopy and Microanalysis</i> , 2004 , 10, 110-111	0.5	5	
42	High resolution transmission electron microscopy study of a GaAs/Si heterostructure grown by chemical beam epitaxy. <i>Applied Physics Letters</i> , 1992 , 60, 616-618	3.4	5	

41	Activation and Deactivation of Gold/Cerialirconia in the Low-Temperature Waterlas Shift Reaction. <i>Angewandte Chemie</i> , 2017 , 129, 16253-16257	3.6	4
40	Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate. <i>ChemSusChem</i> , 2013 , 6, 1952-8	8.3	4
39	A new look at lunar soil collected from the sea of tranquility during the Apollo 11 mission. <i>Microscopy and Microanalysis</i> , 2011 , 17, 34-48	0.5	4
38	Aberration-corrected Analytical Microscopy Characterization of Double-Supported WO3/TiO2/SiO2 Solid Acid Catalysts. <i>ChemCatChem</i> , 2011 , 3, 1045-1050	5.2	4
37	Comment on D nit Cell Information for D and D OPO4 D by Z. G. Li, R. L. Harlow, N. Herron III, H. S. Horowitz, and E. M. McCarron. <i>Journal of Catalysis</i> , 1997 , 171, 509-511	7.3	4
36	Electronic properties of tetrahedral amorphous carbon (ta-C) films containing nanotube regions. <i>Carbon</i> , 1998 , 36, 575-579	10.4	4
35	High Resolution X-Ray Elemental Mapping of Nanoparticles in the STEM. <i>Microscopy and Microanalysis</i> , 2004 , 10, 468-469	0.5	4
34	Growth of high quality gallium arsenide on HF-etched silicon (001) by chemical beam epitaxy. <i>Applied Physics Letters</i> , 1993 , 62, 1653-1655	3.4	4
33	Defects in Ni and Co silicide: Si interfaces. <i>Acta Metallurgica Et Materialia</i> , 1992 , 40, S195-S205		4
32	Probing composition distributions in nanoalloy catalysts with correlative electron microscopy. Journal of Materials Chemistry A, 2020 , 8, 15725-15733	13	3
31	Structural Characterization of Vanadium Phosphate Catalysts Prepared using a Di-block Copolymer Template. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1438-1439	0.5	3
30	Structural Characterization of WO3/ZrO2 Catalysts using HAADF Imaging. <i>Microscopy and Microanalysis</i> , 2008 , 14, 1350-1351	0.5	3
29	Cyclic Voltammetry as a Potential Predictive Method for Supported Nanocrystalline Gold Catalysts for Oxidation in Aqueous Media. <i>ACS Symposium Series</i> , 2006 , 82-98	0.4	3
28	Concluding remarks: nanoparticle assemblies: state-of-the-art and future challenges. <i>Faraday Discussions</i> , 2004 , 125, 409-14	3.6	3
27	Adoption of near-coincident-site lattice orientations by contacting monolayer rafts of metallic nanoparticles with different superlattice periodicities. <i>Philosophical Magazine Letters</i> , 2002 , 82, 21-26	1	3
26	Unexpected enhanced activity catalysts for butane oxidation using mixtures derived from VOHPO4ID.5H2O and AlPO4. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4295		2
25	Monolayer Protected Clusters of Gold and Silver96-119		2
24	Direct observation of 1/2 dislocations occurring at steps in thin film type-B CoSi2//Si(111) interfaces. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1993 , 68, 1345-1358		2

23	Structure function relationship in methane coupling: Nd203/MgO and MgO/Nd2O3 catalysts. <i>Studies in Surface Science and Catalysis</i> , 1994 , 223-228	1.8	2
22	A Career in Catalysis: Graham J. Hutchings. <i>ACS Catalysis</i> , 2021 , 11, 5916-5933	13.1	2
21	Assessing and Controlling the Size, Morphology and Composition of Supported Bimetallic Catalyst Nanoparticles. <i>Microscopy and Microanalysis</i> , 2014 , 20, 74-75	0.5	1
20	Understanding the microstructural transformation mechanism which takes place during the activation of vanadium phosphorus oxide catalysts. <i>Studies in Surface Science and Catalysis</i> , 1997 , 209-2	18 ⁸	1
19	Optimization of Acquisition Parameters for Atomic-Column Electron Energy-Loss Spectrum Imaging in a JEM-2200FS Aberration-Corrected Scanning Transmission Electron Microscope. <i>Microscopy and Microanalysis</i> , 2008 , 14, 1400-1401	0.5	1
18	The variants, domains and defects in the CoSi//Si(111) epitaxial system. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1993 , 68, 1331-1343		1
17	Self-Assembly of Nanostructured Materials 1999 ,		1
16	Morphology and Composition of Biomineralized Ceria and Ceria-Zirconia Nanocrystals. <i>Microscopy and Microanalysis</i> , 2016 , 22, 250-251	0.5	1
15	Scalable Biomineralization of CdS Quantum Dots by Immobilized Cystathionine Lyase. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 15189-15198	8.3	О
14	Electron Microscopy Investigations of Precious Metal Catalysts: Towards Controlled Synthesis of Ultra-Small Nanoparticles. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1854-1855	0.5	
13	Electron Microscopy Informed Catalyst Design. <i>Microscopy and Microanalysis</i> , 2019 , 25, 2282-2283	0.5	
12	Understanding the Growth Mechanism of CeO2 Nanocrystals by Comparison of Experimental and Simulated HAADF-STEM Images. <i>Microscopy and Microanalysis</i> , 2014 , 20, 178-179	0.5	
11	Structural and Optical Characterization of Biosynthesized CdS Quantum Dots. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1737-1738	0.5	
10	Evaluation and Structural Characterization of DuPont V-P-O/SiO2 Catalysts. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1412-1413	0.5	
9	Imaging and Microanalysis of Supported Metal Catalysts in the Analytical Electron Microscope. <i>Catalytic Science Series</i> , 2011 , 81-120	0.4	
8	A new statistical approach for generating meaningful particle size distributions from aberration corrected STEM-HAADF images of supported metal catalysts. <i>Microscopy and Microanalysis</i> , 2012 , 18, 376-377	0.5	
7	Microstructural Development of Supported Pt/ZrO2/SiO2 Catalysts: The Effect of ZrO2 Nanoligands. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1414-1415	0.5	
6	Elemental Mapping of Nanoscale Structures in the Aberration-Corrected Analytical Electron Microscope. <i>Microscopy and Microanalysis</i> , 2008 , 14, 1368-1369	0.5	

Synthesis and Characterization of Gold Nanostars, Nanowires and Nanoboxes. *Microscopy and Microanalysis*, **2008**, 14, 276-277

0.5

- Nanocrystalline gold and gold-palladium as effective catalysts for selective oxidation. *Materials Research Society Symposia Proceedings*, **2005**, 900, 1
- An investigation of misfit dislocations in Al on (001) GaAs grown by chemical beam epitaxy. *Journal of Materials Science*, **1993**, 1, 99
- Templates for Metal Nanowire Self-Assembly **2002**, 139-146
- A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of Wand N-Doped TiO2 Nanoparticle/Water Interfaces. *Catalysts*, **2021**, 11, 1305

4