Monika Kopeć

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/196902/publications.pdf

Version: 2024-02-01

567281 752698 21 656 15 20 citations h-index g-index papers 28 28 28 900 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The role of pro- and antiangiogenic factors in angiogenesis process by Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 268, 120667.	3.9	10
2	Double face of cytochrome c in cancers by Raman imaging. Scientific Reports, 2022, 12, 2120.	3.3	26
3	Redox Imbalance and Biochemical Changes in Cancer by Probing Redox-Sensitive Mitochondrial Cytochromes in Label-Free Visible Resonance Raman Imaging. Cancers, 2021, 13, 960.	3.7	25
4	Revision of Commonly Accepted Warburg Mechanism of Cancer Development: Redox-Sensitive Mitochondrial Cytochromes in Breast and Brain Cancers by Raman Imaging. Cancers, 2021, 13, 2599.	3.7	17
5	Raman imaging and statistical methods for analysis various type of human brain tumors and breast cancers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120091.	3.9	22
6	A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: linear and non-linear optics in cancer research as a gateway to tumor cell identity. Expert Review of Molecular Diagnostics, 2020, 20, 99-115.	3.1	30
7	Advances in Raman imaging combined with AFM and fluorescence microscopy are beneficial for oncology and cancer research. Nanomedicine, 2019, 14, 1873-1888.	3.3	23
8	Monitoring glycosylation metabolism in brain and breast cancer by Raman imaging. Scientific Reports, 2019, 9, 166.	3.3	37
9	Aberrant Protein Phosphorylation in Cancer by Using Raman Biomarkers. Cancers, 2019, 11, 2017.	3.7	36
10	Polarized Raman microscopy imaging: Capabilities and challenges for cancer research. Journal of Molecular Liquids, 2018, 259, 102-111.	4.9	15
11	Angiogenesis - a crucial step in breast cancer growth, progression and dissemination by Raman imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 198, 338-345.	3.9	32
12	Surface-Enhanced Raman Spectroscopy Analysis of Human Breast Cancer via Silver Nanoparticles: An Examination of Fabrication Methods. Journal of Spectroscopy, 2018, 2018, 1-8.	1.3	8
13	Histochemical analysis of human breast tissue samples by IR and Raman spectroscopies. Protocols discussion. Infrared Physics and Technology, 2018, 93, 247-254.	2.9	20
14	Raman Spectroscopy, Medical Applications: A New Look Inside Human Body With Raman Imaging. , 2017, , 915-918.		3
15	Raman microspectroscopy of Hematoporphyrins. Imaging of the noncancerous and the cancerous human breast tissues with photosensitizers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 169, 182-191.	3.9	12
16	Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231. Analyst, The, 2016, 141, 5646-5658.	3.5	38
17	Development of a new diagnostic Raman method for monitoring epigenetic modifications in the cancer cells of human breast tissue. Analytical Methods, 2016, 8, 8542-8553.	2.7	39
18	Raman microspectroscopy of noncancerous and cancerous human breast tissues. Identification and phase transitions of linoleic and oleic acids by Raman low-temperature studies. Analyst, The, 2015, 140, 2134-2143.	3.5	27

#	Article	IF	CITATIONS
19	The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst, The, 2015, 140, 2224-2235.	3.5	168
20	Label-free determination of lipid composition and secondary protein structure of human salivary noncancerous and cancerous tissues by Raman microspectroscopy. Analyst, The, 2015, 140, 2107-2113.	3.5	30
21	The cellular environment of cancerous human tissue. Interfacial and dangling water as a "hydration fingerprint― Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 129, 609-623.	3.9	32