Jens Lehmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1968393/publications.pdf

Version: 2024-02-01

145106 43601 10,819 174 33 95 citations h-index g-index papers 179 179 179 5750 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Efficient computation of comprehensive statistical information of large OWL datasets: a scalable approach. Enterprise Information Systems, 2023, 17 , .	3.3	1
2	Survey on English Entity Linking on Wikidata: Datasets and approaches. Semantic Web, 2022, 13, 925-966.	1.1	6
3	Spatial concept learning and inference on geospatial polygon data. Knowledge-Based Systems, 2022, 241, 108233.	4.0	O
4	Geometric Algebra based Embeddings for Static and Temporal Knowledge Graph Completion. IEEE Transactions on Knowledge and Data Engineering, 2022, , 1-1.	4.0	2
5	A Simulated Annealing Meta-heuristic for Concept Learning in Description Logics. Lecture Notes in Computer Science, 2022, , 266-281.	1.0	1
6	Tree-KGQA: An Unsupervised Approach for Question Answering Over Knowledge Graphs. IEEE Access, 2022, 10, 50467-50478.	2.6	5
7	Dihedron Algebraic Embeddings forÂSpatio-Temporal Knowledge Graph Completion. Lecture Notes in Computer Science, 2022, , 253-269.	1.0	6
8	SGPT: A Generative Approach for SPARQL Query Generation From Natural Language Questions. IEEE Access, 2022, 10, 70712-70723.	2.6	3
9	Towards holistic Entity Linking: Survey and directions. Information Systems, 2021, 95, 101624.	2.4	11
10	Link Prediction of Weighted Triples for Knowledge Graph Completion Within the Scholarly Domain. IEEE Access, 2021, 9, 116002-116014.	2.6	8
11	ParaQA: A Question Answering Dataset with Paraphrase Responses for Single-Turn Conversation. Lecture Notes in Computer Science, 2021, , 598-613.	1.0	5
12	Embedding Knowledge Graphs Attentive to Positional and Centrality Qualities. Lecture Notes in Computer Science, 2021, , 548-564.	1.0	2
13	VOGUE: Answer Verbalization Through Multi-Task Learning. Lecture Notes in Computer Science, 2021, , 563-579.	1.0	2
14	Introduction to neural networkâ€based question answering over knowledge graphs. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2021, 11, e1389.	4.6	12
15	Multiple Run Ensemble Learning with Low-Dimensional Knowledge Graph Embeddings. , 2021, , .		3
16	Trans4E: Link prediction on scholarly knowledge graphs. Neurocomputing, 2021, 461, 530-542.	3.5	34
17	Context Transformer with Stacked Pointer Networks for Conversational Question Answering over Knowledge Graphs. Lecture Notes in Computer Science, 2021, , 356-371.	1.0	17
18	How Complex Is Your Classification Problem?. ACM Computing Surveys, 2020, 52, 1-34.	16.1	128

#	Article	lF	CITATIONS
19	IOTA: Interlinking of heterogeneous multilingual open fiscal DaTA. Expert Systems With Applications, 2020, 147, 113135.	4.4	4
20	3D Learning and Reasoning in Link Prediction Over Knowledge Graphs. IEEE Access, 2020, 8, 196459-196471.	2.6	1
21	Let the Margin SlidE $\hat{A}\pm$ for Knowledge Graph Embeddings via a Correntropy Objective Function. , 2020, , .		4
22	IQA: Interactive query construction in semantic question answering systems. Web Semantics, 2020, 64, 100586.	2.2	12
23	DISE: A Distributed in-Memory SPARQL Processing Engine over Tensor Data. , 2020, , .		1
24	Let's build Bridges, not Walls: SPARQL Querying of TinkerPop Graph Databases with Sparql-Gremlin. , 2020, , .		4
25	Embedding-Based Recommendations onÂScholarly Knowledge Graphs. Lecture Notes in Computer Science, 2020, , 255-270.	1.0	10
26	VQuAnDa: Verbalization QUestion ANswering DAtaset. Lecture Notes in Computer Science, 2020, , 531-547.	1.0	12
27	Temporal Knowledge Graph Completion Based on Time Series Gaussian Embedding. Lecture Notes in Computer Science, 2020, , 654-671.	1.0	30
28	Evaluating the Impact of Knowledge Graph Context on Entity Disambiguation Models. , 2020, , .		28
29	Meta-hyperband: Hyperparameter Optimization with Meta-learning and Coarse-to-Fine. Lecture Notes in Computer Science, 2020, , 335-347.	1.0	O
30	MINDS: A Translator to Embed Mathematical Expressions Inside SPARQL Queries. Lecture Notes in Computer Science, 2020, , 104-117.	1.0	1
31	PNEL: Pointer Network Based End-To-End Entity Linking over Knowledge Graphs. Lecture Notes in Computer Science, 2020, , 21-38.	1.0	6
32	Knowledge Graph Embeddings in Geometric Algebras. , 2020, , .		8
33	Ontology Design for Pharmaceutical Research Outcomes. Lecture Notes in Computer Science, 2020, , 119-132.	1.0	1
34	Encoding Knowledge Graph Entity Aliases in Attentive Neural Network forÂWikidata Entity Linking. Lecture Notes in Computer Science, 2020, , 328-342.	1.0	7
35	CASQAD – A New Dataset for Context-Aware Spatial Question Answering. Lecture Notes in Computer Science, 2020, , 3-17.	1.0	1
36	TISCO: Temporal Scoping of Facts. , 2019, , .		1

#	Article	IF	CITATIONS
37	BioKEEN: a library for learning and evaluating biological knowledge graph embeddings. Bioinformatics, 2019, 35, 3538-3540.	1.8	19
38	SML-Bench– A benchmarking framework for structured machine learning. Semantic Web, 2019, 10, 231-245.	1.1	10
39	New label noise injection methods for the evaluation of noise filters. Knowledge-Based Systems, 2019, 163, 693-704.	4.0	24
40	TISCO: Temporal scoping of facts. Web Semantics, 2019, 54, 72-86.	2.2	14
41	Incorporating Joint Embeddings into Goal-Oriented Dialogues with Multi-task Learning. Lecture Notes in Computer Science, 2019, , 225-239.	1.0	5
42	Incorporating Literals into Knowledge Graph Embeddings. Lecture Notes in Computer Science, 2019, , 347-363.	1.0	41
43	Pretrained Transformers for Simple Question Answering over Knowledge Graphs. Lecture Notes in Computer Science, 2019, , 470-486.	1.0	31
44	Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs. Lecture Notes in Computer Science, 2019, , 487-504.	1.0	46
45	Using a KG-Copy Network for Non-goal Oriented Dialogues. Lecture Notes in Computer Science, 2019, , 93-109.	1.0	2
46	The KEEN Universe. Lecture Notes in Computer Science, 2019, , 3-18.	1.0	4
47	Squerall: Virtual Ontology-Based Access to Heterogeneous and Large Data Sources. Lecture Notes in Computer Science, 2019, , 229-245.	1.0	22
48	QaldGen: Towards Microbenchmarking of Question Answering Systems over Knowledge Graphs. Lecture Notes in Computer Science, 2019, , 277-292.	1.0	7
49	Sparklify: A Scalable Software Component for Efficient Evaluation of SPARQL Queries over Distributed RDF Datasets. Lecture Notes in Computer Science, 2019, , 293-308.	1.0	9
50	LC-QuAD 2.0: A Large Dataset for Complex Question Answering over Wikidata and DBpedia. Lecture Notes in Computer Science, 2019, , 69-78.	1.0	80
51	DBpedia FlexiFusion the Best of Wikipedia > Wikidata > Your Data. Lecture Notes in Computer Science, 2019, , 96-112.	1.0	12
52	Complex Query Augmentation for Question Answering over Knowledge Graphs. Lecture Notes in Computer Science, 2019, , 571-587.	1.0	7
53	Uniform Access to Multiform Data Lakes using Semantic Technologies. , 2019, , .		9
54	Old is Gold: Linguistic Driven Approach for Entity and Relation Linking of Short Text. , 2019, , .		45

#	Article	IF	CITATIONS
55	Deep Query Ranking for Question Answering over Knowledge Bases. Lecture Notes in Computer Science, 2019, , 635-638.	1.0	1
56	Clustering Pipelines of Large RDF POI Data. Lecture Notes in Computer Science, 2019, , 24-27.	1.0	1
57	SimpleLSTM: A Deep-Learning Approach to Simple-Claims Classification. Lecture Notes in Computer Science, 2019, , 244-255.	1.0	O
58	Towards a Scalable Semantic-Based Distributed Approach for SPARQL Query Evaluation. Lecture Notes in Computer Science, 2019, , 295-309.	1.0	2
59	Toward Veracity Assessment in RDF Knowledge Bases. Journal of Data and Information Quality, 2018, 9, 1-26.	1.5	8
60	Structured Knowledge on the Web 7.0., 2018,,.		1
61	DL-Learner Structured Machine Learning on Semantic Web Data. , 2018, , .		9
62	Detecting Linked Data quality issues via crowdsourcing: A DBpedia study. Semantic Web, 2018, 9, 303-335.	1.1	20
63	Why Reinvent the Wheel. , 2018, , .		71
64	Two for one. , 2018, , .		8
64	Two for one. , 2018, , . Wikidata through the eyes of DBpedia. Semantic Web, 2018, 9, 493-503.	1.1	8 25
		1.1	
65	Wikidata through the eyes of DBpedia. Semantic Web, 2018, 9, 493-503. DistLODStats: Distributed Computation of RDF Dataset Statistics. Lecture Notes in Computer Science,		25
65	Wikidata through the eyes of DBpedia. Semantic Web, 2018, 9, 493-503. DistLODStats: Distributed Computation of RDF Dataset Statistics. Lecture Notes in Computer Science, 2018, , 206-222. EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs. Lecture Notes	1.0	25 8
65 66 67	Wikidata through the eyes of DBpedia. Semantic Web, 2018, 9, 493-503. DistLODStats: Distributed Computation of RDF Dataset Statistics. Lecture Notes in Computer Science, 2018, , 206-222. EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs. Lecture Notes in Computer Science, 2018, , 108-126. Named Entity Recognition in Twitter Using Images and Text. Lecture Notes in Computer Science, 2018, ,	1.0	25 8 65
65 66 67 68	Wikidata through the eyes of DBpedia. Semantic Web, 2018, 9, 493-503. DistLODStats: Distributed Computation of RDF Dataset Statistics. Lecture Notes in Computer Science, 2018, , 206-222. EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs. Lecture Notes in Computer Science, 2018, , 108-126. Named Entity Recognition in Twitter Using Images and Text. Lecture Notes in Computer Science, 2018, , 191-199. Formal Query Generation for Question Answering over Knowledge Bases. Lecture Notes in Computer	1.0	25 8 65 3
65 66 67 68	Wikidata through the eyes of DBpedia. Semantic Web, 2018, 9, 493-503. DistLODStats: Distributed Computation of RDF Dataset Statistics. Lecture Notes in Computer Science, 2018, , 206-222. EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs. Lecture Notes in Computer Science, 2018, , 108-126. Named Entity Recognition in Twitter Using Images and Text. Lecture Notes in Computer Science, 2018, , 191-199. Formal Query Generation for Question Answering over Knowledge Bases. Lecture Notes in Computer Science, 2018, , 714-728. A linked open data representation of patents registered in the US from 2005–2017. Scientific Data, 2018,	1.0 1.0 1.0	25 8 65 3

#	Article	IF	CITATIONS
73	Improving Response Selection in Multi-Turn Dialogue Systems by Incorporating Domain Knowledge. , 2018, , .		18
74	Survey on challenges of Question Answering in the Semantic Web. Semantic Web, 2017, 8, 895-920.	1.1	151
75	LDOW2017., 2017,,.		O
76	Neural Network-based Question Answering over Knowledge Graphs on Word and Character Level. , 2017, , .		174
77	Torpedo: Improving the State-of-the-Art RDF Dataset Slicing. , 2017, , .		5
78	Sustainable Linked Data Generation: The Case of DBpedia. Lecture Notes in Computer Science, 2017, , 297-313.	1.0	2
79	LC-QuAD: A Corpus for Complex Question Answering over Knowledge Graphs. Lecture Notes in Computer Science, 2017, , 210-218.	1.0	118
80	SimDoc., 2017,,.		4
81	Trying Not to Die Benchmarking. , 2017, , .		6
82	Benchmarking Faceted Browsing Capabilities of Triplestores. , 2017, , .		3
83	SQCFramework., 2017, , .		9
84	Implementing scalable structured machine learning for big data in the SAKE project., 2017, , .		3
84	Implementing scalable structured machine learning for big data in the SAKE project., 2017,,. LOG4MEX., 2017,,.		
		1.0	3
85	LOG4MEX., 2017, , . Wombat – A Generalization Approach for Automatic Link Discovery. Lecture Notes in Computer	1.0	3
85	LOG4MEX., 2017, , . Wombat – A Generalization Approach for Automatic Link Discovery. Lecture Notes in Computer Science, 2017, , 103-119. The BigDataEurope Platform – Supporting the Variety Dimension of Big Data. Lecture Notes in		3 0 20
85 86 87	LOG4MEX., 2017, , . Wombat – A Generalization Approach for Automatic Link Discovery. Lecture Notes in Computer Science, 2017, , 103-119. The BigDataEurope Platform – Supporting the Variety Dimension of Big Data. Lecture Notes in Computer Science, 2017, , 41-59. Distributed Semantic Analytics Using the SANSA Stack. Lecture Notes in Computer Science, 2017, ,	1.0	3 0 20 21

#	Article	IF	CITATIONS
91	DL-Learner—A framework for inductive learning on the Semantic Web. Web Semantics, 2016, 39, 15-24.	2.2	71
92	CubeQAâ€"Question Answering on RDF Data Cubes. Lecture Notes in Computer Science, 2016, , 325-340.	1.0	16
93	Semantically Enhanced Quality Assurance in the JURION Business Use Case. Lecture Notes in Computer Science, 2016, , 661-676.	1.0	6
94	Integrating New Refinement Operators in Terminological Decision Trees Learning. Lecture Notes in Computer Science, 2016, , 511-526.	1.0	2
95	ACRyLIQ: Leveraging DBpedia for Adaptive Crowdsourcing in Linked Data Quality Assessment. Lecture Notes in Computer Science, 2016, , 681-696.	1.0	5
96	Exploring Term Networks for Semantic Search over RDF Knowledge Graphs. Communications in Computer and Information Science, 2016, , 249-261.	0.4	3
97	MEX vocabulary., 2015, , .		34
98	DeFactoâ€"Temporal and multilingual Deep Fact Validation. Web Semantics, 2015, 35, 85-101.	2.2	50
99	DBpedia – A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web, 2015, 6, 167-195.	1.1	1,826
100	Quality assessment for Linked Data: A Survey. Semantic Web, 2015, 7, 63-93.		
	Quality assessment for Efficience Data.ac700/15afvey. Semantic VVets, 2013, 7, 03 73.	1.1	387
101	Unsupervised learning of an extensive and usable taxonomy for DBpedia., 2015, , .	1.1	12
101		1.1	
	Unsupervised learning of an extensive and usable taxonomy for DBpedia., 2015,,.		12
102	Unsupervised learning of an extensive and usable taxonomy for DBpedia., 2015,,. LinkedSpending: OpenSpending becomes Linked Open Data. Semantic Web, 2015, 7, 95-104.	1.1	12 27
102	Unsupervised learning of an extensive and usable taxonomy for DBpedia., 2015,,. LinkedSpending: OpenSpending becomes Linked Open Data. Semantic Web, 2015, 7, 95-104. 2nd special issue on Linked Dataset Descriptions. Semantic Web, 2015, 6, 103-104. Automating RDF Dataset Transformation and Enrichment. Lecture Notes in Computer Science, 2015,,	1.1	12 27 3
102 103 104	Unsupervised learning of an extensive and usable taxonomy for DBpedia., 2015, , . LinkedSpending: OpenSpending becomes Linked Open Data. Semantic Web, 2015, 7, 95-104. 2nd special issue on Linked Dataset Descriptions. Semantic Web, 2015, 6, 103-104. Automating RDF Dataset Transformation and Enrichment. Lecture Notes in Computer Science, 2015, , 371-387. DBpedia Commons: Structured Multimedia Metadata from the Wikimedia Commons. Lecture Notes in	1.1	12 27 3
102 103 104	Unsupervised learning of an extensive and usable taxonomy for DBpedia., 2015, , . LinkedSpending: OpenSpending becomes Linked Open Data. Semantic Web, 2015, 7, 95-104. 2nd special issue on Linked Dataset Descriptions. Semantic Web, 2015, 6, 103-104. Automating RDF Dataset Transformation and Enrichment. Lecture Notes in Computer Science, 2015, , 371-387. DBpedia Commons: Structured Multimedia Metadata from the Wikimedia Commons. Lecture Notes in Computer Science, 2015, , 281-289. Assessing and Refining Mappingsto RDF to Improve Dataset Quality. Lecture Notes in Computer Science,	1.1 1.0 1.0	12 27 3 9

#	Article	IF	CITATIONS
109	Test-driven evaluation of linked data quality. , 2014, , .		148
110	Databugger., 2014,,.		15
111	Towards an open question answering architecture. , 2014, , .		28
112	Towards question answering on statistical linked data. , 2014, , .		10
113	LD viewer - linked data presentation framework. , 2014, , .		6
114	Ontology Based Data Access and Integration for Improving the Effectiveness of Farming in Nepal. , 2014, , .		17
115	Logics for the Semantic Web. Handbook of the History of Logic, 2014, , 679-710.	0.5	1
116	Hybrid Acquisition of Temporal Scopes for RDF Data. Lecture Notes in Computer Science, 2014, , 488-503.	1.0	16
117	Knowledge Base Creation, Enrichment and Repair. Lecture Notes in Computer Science, 2014, , 45-69.	1.0	1
118	Introduction to Linked Data and Its Lifecycle on the Web. Lecture Notes in Computer Science, 2014, , $1-99$.	1.0	23
119	Lessons Learned — The Case of CROCUS: Cluster-Based Ontology Data Cleansing. Lecture Notes in Computer Science, 2014, , 14-24.	1.0	4
120	Inductive Lexical Learning of Class Expressions. Lecture Notes in Computer Science, 2014, , 42-53.	1.0	9
121	Linked Data Reasoning. X Media Press, 2014, , 193-206.	0.1	0
122	Improving the Performance of the DL-Learner SPARQL Component for Semantic Web Applications. Lecture Notes in Computer Science, 2013, , 332-337.	1.0	3
123	Can We Create Better Links by Playing Games?., 2013,,.		1
124	Towards Transfer Learning of Link Specifications. , 2013, , .		0
125	Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features. , 2013, , .		16
126	User-driven quality evaluation of DBpedia. , 2013, , .		85

#	Article	lF	Citations
127	SPARQL2NL., 2013,,.		11
128	Sorry, i don't speak SPARQL., 2013, , .		45
129	Publishing and interlinking the Global Health Observatory dataset. Semantic Web, 2013, 4, 315-322.	1.1	12
130	Introduction to Linked Data and Its Lifecycle on the Web. Lecture Notes in Computer Science, 2013 , , $1\text{-}90$.	1.0	39
131	Pattern Based Knowledge Base Enrichment. Lecture Notes in Computer Science, 2013, , 33-48.	1.0	20
132	Crowdsourcing Linked Data Quality Assessment. Lecture Notes in Computer Science, 2013, , 260-276.	1.0	76
133	TripleCheckMate: A Tool for Crowdsourcing the Quality Assessment of Linked Data. Communications in Computer and Information Science, 2013, , 265-272.	0.4	32
134	Navigation-Induced Knowledge Engineering by Example. Lecture Notes in Computer Science, 2013, , 207-222.	1.0	2
135	SAIM \hat{a} \in "One Step Closer to Zero-Configuration Link Discovery. Lecture Notes in Computer Science, 2013, , 167-172.	1.0	4
136	User Interface for a Template Based Question Answering System. Communications in Computer and Information Science, 2013, , 258-264.	0.4	1
137	Managing the Life-Cycle of Linked Data with the LOD2 Stack. Lecture Notes in Computer Science, 2012, , $1\text{-}16$.	1.0	69
138	DBpedia and the live extraction of structured data from Wikipedia. Data Technologies and Applications, 2012, 46, 157-181.	0.8	73
139	LinkedGeoData: A core for a web of spatial open data. Semantic Web, 2012, 3, 333-354.	1.1	244
140	Template-based question answering over RDF data., 2012,,.		307
141	deqa: Deep Web Extraction for Question Answering. Lecture Notes in Computer Science, 2012, , 131-147.	1.0	26
142	The German DBpedia: A Sense Repository for Linking Entities. , 2012, , 181-190.		10
143	Assessing Linked Data Mappings Using Network Measures. Lecture Notes in Computer Science, 2012, , 87-102.	1.0	78
144	LODStats – An Extensible Framework for High-Performance Dataset Analytics. Lecture Notes in Computer Science, 2012, , 353-362.	1.0	96

#	Article	IF	CITATIONS
145	NIF Combinator: Combining NLP Tool Output. Lecture Notes in Computer Science, 2012, , 446-449.	1.0	4
146	Universal OWL Axiom Enrichment for Large Knowledge Bases. Lecture Notes in Computer Science, 2012, , 57-71.	1.0	36
147	DeFacto - Deep Fact Validation. Lecture Notes in Computer Science, 2012, , 312-327.	1.0	42
148	Towards integrating fuzzy logic capabilities into an ontology-based Inductive Logic Programming framework. , $2011,\ldots$		11
149	Class expression learning for ontology engineering. Web Semantics, 2011, 9, 71-81.	2.2	100
150	DBpedia SPARQL Benchmark – Performance Assessment with Real Queries on Real Data. Lecture Notes in Computer Science, 2011, , 454-469.	1.0	149
151	ReDD-Observatory: Using the Web of Data for Evaluating the Research-Disease Disparity. , 2011, , .		7
152	AutoSPARQL: Let Users Query Your Knowledge Base. Lecture Notes in Computer Science, 2011, , 63-79.	1.0	61
153	Introduction to Linked Data and Its Lifecycle on the Web. Lecture Notes in Computer Science, 2011, , 1-75.	1.0	28
154	Learning of OWL Class Expressions on Very Large Knowledge Bases and its Applications. , 2011, , 104-130.		6
155	Extracting reduced logic programs from artificial neural networks. Applied Intelligence, 2010, 32, 249-266.	3.3	13
155 156		3.3	130
	249-266.		
156	249-266. Concept learning in description logics using refinement operators. Machine Learning, 2010, 78, 203-250.	3.4	130
156 157	Concept learning in description logics using refinement operators. Machine Learning, 2010, 78, 203-250. Creating knowledge out of interlinked data. Semantic Web, 2010, 1, 97-104.	3.4	130 37
156 157 158	Concept learning in description logics using refinement operators. Machine Learning, 2010, 78, 203-250. Creating knowledge out of interlinked data. Semantic Web, 2010, 1, 97-104. Class Expression Learning for Ontology Engineering. SSRN Electronic Journal, 2010, , . Ideal Downward Refinement in the \$mathcal{EL}\$ Description Logic. Lecture Notes in Computer	3.4 1.1 0.4	130 37 1
156 157 158	Concept learning in description logics using refinement operators. Machine Learning, 2010, 78, 203-250. Creating knowledge out of interlinked data. Semantic Web, 2010, 1, 97-104. Class Expression Learning for Ontology Engineering. SSRN Electronic Journal, 2010, , . Ideal Downward Refinement in the \$mathcal{EL}\$ Description Logic. Lecture Notes in Computer Science, 2010, , 73-87.	3.4 1.1 0.4	130 37 1 25

#	Article	IF	CITATIONS
163	Learning of OWL Class Descriptions on Very Large Knowledge Bases. International Journal on Semantic Web and Information Systems, 2009, 5, 25-48.	2.2	64
164	Triplify., 2009, , .		161
165	DBpedia Live Extraction. Lecture Notes in Computer Science, 2009, , 1209-1223.	1.0	28
166	RelFinder: Revealing Relationships in RDF Knowledge Bases. Lecture Notes in Computer Science, 2009, , 182-187.	1.0	90
167	DBpedia: A Nucleus for a Web of Open Data. Lecture Notes in Computer Science, 2007, , 722-735.	1.0	2,317
168	What Have Innsbruck and Leipzig in Common? Extracting Semantics from Wiki Content. Lecture Notes in Computer Science, 2007, , 503-517.	1.0	106
169	Hybrid Learning of Ontology Classes. Lecture Notes in Computer Science, 2007, , 883-898.	1.0	22
170	A Refinement Operator Based Learning Algorithm for the $\mathcal{L}_{ALC}\$ Description Logic. , 2007, , 147-160.		46
171	Foundations of Refinement Operators for Description Logics. , 2007, , 161-174.		27
172	Geolog: Scalable Logic Programming on Spatial Data. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 345, 191-204.	0.8	0
173	DeFacto - Temporal and Multilingual Deep Fact Validation. SSRN Electronic Journal, 0, , .	0.4	2
174	TISCO: Temporal Scoping of Facts. SSRN Electronic Journal, 0, , .	0.4	0