
Andreas de Neergaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1968240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere, 2014, 97, 16-25.	4.2	232
2	Environmental Consequences of the Demise in Swidden Cultivation in Southeast Asia: Carbon Storage and Soil Quality. Human Ecology, 2009, 37, 375-388.	0.7	194
3	Taking Stock of the Brazilian "Zeroâ€Till Revolution― A Review of Landmark Research and Farmers' Practice. Advances in Agronomy, 2006, 91, 47-110.	2.4	174
4	Organic Carbon Dynamics in Different Soil Types After Conversion of Forest to Agriculture. Land Degradation and Development, 2015, 26, 272-283.	1.8	166
5	Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agriculture, Ecosystems and Environment, 2014, 196, 137-146.	2.5	157
6	Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. Journal of Cleaner Production, 2016, 139, 429-439.	4.6	90
7	Australian wattle species in the Drakensberg region of South Africa – An invasive alien or a natural resource?. Agricultural Systems, 2005, 85, 216-233.	3.2	80
8	Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize. Agricultural Water Management, 2017, 179, 271-276.	2.4	79
9	A fresh look at shifting cultivation: Fallow length an uncertain indicator of productivity. Agricultural Systems, 2008, 96, 75-84.	3.2	76
10	The forgotten D: challenges of addressing forest degradation in complex mosaic landscapes under REDD+. Geografisk Tidsskrift, 2012, 112, 63-76.	0.4	76
11	Interactions between uptake of amino acids and inorganic nitrogen in wheat plants. Biogeosciences, 2012, 9, 1509-1518.	1.3	75
12	The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Science of the Total Environment, 2018, 612, 1329-1339.	3.9	74
13	Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biology and Biochemistry, 2004, 36, 1075-1085.	4.2	70
14	Soil erosion from shifting cultivation and other smallholder land use in Sarawak, Malaysia. Agriculture, Ecosystems and Environment, 2008, 125, 182-190.	2.5	59
15	Alternate partial root-zone irrigation induced dry/wet cycles of soils stimulate N mineralization and improve N nutrition in tomatoes. Plant and Soil, 2010, 337, 167-177.	1.8	58
16	Certified organic agriculture in China and Brazil: Market accessibility and outcomes following adoption. Ecological Economics, 2010, 69, 1785-1793.	2.9	56
17	Effects of fertilization with urban and agricultural organic wastes in a field trial – Waste imprint on soil microbial activity. Soil Biology and Biochemistry, 2013, 57, 794-802.	4.2	56
18	Decomposition of white clover (Trifolium repens) and ryegrass (Lolium perenne) components: C and N dynamics simulated with the DAISY soil organic matter submodel. European Journal of Agronomy, 2002, 16, 43-55.	1.9	55

#	Article	IF	CITATIONS
19	Composting of solids separated from anaerobically digested animal manure: Effect of different bulking agents and mixing ratios on emissions of greenhouse gases and ammonia. Biosystems Engineering, 2014, 124, 63-77.	1.9	55
20	Mitigating CH 4 and N 2 O emissions from intensive rice production systems in northern Vietnam: Efficiency of drainage patterns in combination with rice residue incorporation. Agriculture, Ecosystems and Environment, 2017, 249, 101-111.	2.5	55
21	Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability. Chemosphere, 2017, 166, 352-362.	4.2	55
22	Intensification of Upland Agriculture in Thailand: Development or Degradation?. Land Degradation and Development, 2017, 28, 83-94.	1.8	50
23	Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils. Chemical and Biological Technologies in Agriculture, 2017, 4, .	1.9	49
24	Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertiliser application strategies. Science of the Total Environment, 2020, 739, 140215.	3.9	49
25	Heterogeneous distribution may substantially decrease initial decomposition, long-term microbial growth and N-immobilization from high C-to-N ratio resources. European Journal of Soil Science, 2006, 57, 517-529.	1.8	46
26	Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia. Waste Management, 2015, 44, 82-93.	3.7	46
27	Contribution of agroforestry to climate change mitigation and livelihoods in Western Kenya. Agroforestry Systems, 2020, 94, 203-220.	0.9	46
28	Energetic, economic and ecological balances of a combined food and energy system. Biomass and Bioenergy, 1998, 15, 407-416.	2.9	44
29	Earthworms change the quantity and composition of dissolved organic carbon and reduce greenhouse gas emissions during composting. Waste Management, 2017, 62, 43-51.	3.7	44
30	Effects of rice straw, biochar and mineral fertiliser on methane (CH4) and nitrous oxide (N2O) emissions from rice (Oryza sativa L.) grown in a rain-fed lowland rice soil of Cambodia: a pot experiment. Paddy and Water Environment, 2015, 13, 465-475.	1.0	43
31	Methane (CH4) and nitrous oxide (N2O) emissions from the system of rice intensification (SRI) under a rain-fed lowland rice ecosystem in Cambodia. Nutrient Cycling in Agroecosystems, 2013, 97, 13-27.	1.1	41
32	Carbon allocation to roots, rhizodeposits and soil after pulse labelling: a comparison of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.). Biology and Fertility of Soils, 2004, 39, 228-234.	2.3	39
33	A nitrogen mineralization model based on relationships for gross mineralization and immobilization. Soil Biology and Biochemistry, 2006, 38, 2712-2721.	4.2	39
34	The System of Rice Intensification: Adapted practices, reported outcomes and their relevance in Cambodia. Agricultural Systems, 2012, 113, 16-27.	3.2	38
35	Alternate partial root-zone irrigation improves fertilizer-N use efficiency in tomatoes. Irrigation Science, 2013, 31, 589-598.	1.3	38
36	Greenhouse gas emissions from passive composting of manure and digestate with crop residues and biochar on small-scale livestock farms in Vietnam. Environmental Technology (United Kingdom), 2015, 36, 2924-2935.	1.2	36

Andreas de Neergaard

#	Article	IF	CITATIONS
37	Influence of the rhizosphere on microbial biomass and recently formed organic matter. European Journal of Soil Science, 2001, 52, 377-384.	1.8	35
38	Relating soil carbon fractions to land use in sloping uplands in northern Thailand. Agriculture, Ecosystems and Environment, 2009, 131, 229-239.	2.5	33
39	Title is missing!. Plant and Soil, 1998, 203, 91-101.	1.8	32
40	Development of allometric models for above and belowground biomass in swidden cultivation fallows of Northern Laos. Forest Ecology and Management, 2015, 357, 104-116.	1.4	31
41	Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture. Scientific Reports, 2016, 6, 26279.	1.6	31
42	The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa. Biological Invasions, 2016, 18, 445-456.	1.2	31
43	Changes in soil organic carbon stocks after conversion from forest to oil palm plantations in Malaysian Borneo. Environmental Research Letters, 2018, 13, 105001.	2.2	30
44	Farm-scale greenhouse gas balances, hotspots and uncertainties in smallholder crop-livestock systems in Central Kenya. Agriculture, Ecosystems and Environment, 2017, 248, 58-70.	2.5	29
45	The impact of certification on the natural and financial capitals of Ghanaian cocoa farmers. Agroecology and Sustainable Food Systems, 2017, 41, 143-166.	1.0	29
46	Title is missing!. Plant and Soil, 2002, 245, 307-314.	1.8	28
47	A comparative study of farm nutrient budgets and nutrient flows of certified organic and non-organic farms in China, Brazil and Egypt. Nutrient Cycling in Agroecosystems, 2010, 87, 455-470.	1.1	28
48	Manure, biogas digestate and crop residue management affects methane gas emissions from rice paddy fields on Vietnamese smallholder livestock farms. Nutrient Cycling in Agroecosystems, 2015, 103, 329-346.	1.1	27
49	Early drainage mitigates methane and nitrous oxide emissions from organically amended paddy soils. Geoderma, 2017, 304, 49-58.	2.3	25
50	Biofuels, land use change and smallholder livelihoods: A case study from Banteay Chhmar, Cambodia. Applied Geography, 2012, 34, 525-532.	1.7	24
51	Combining organic and inorganic nitrogen fertilisation reduces N2O emissions from cereal crops: a comparative analysis of China and Zimbabwe. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 233-245.	1.0	24
52	Soil greenhouse gas emissions from inorganic fertilizers and recycled oil palm waste products from Indonesian oil palm plantations. GCB Bioenergy, 2019, 11, 1056-1074.	2.5	24
53	Maize growth and soil nitrogen availability after fertilization with cattle manure and/or gliricidia in semi-arid NE Brazil. Nutrient Cycling in Agroecosystems, 2008, 82, 61-73.	1.1	22
54	Organic farm conventionalisation and farmer practices in China, Brazil and Egypt. Agronomy for Sustainable Development, 2011, 31, 689-698.	2.2	22

#	Article	IF	CITATIONS
55	Evaluation of bamboo as an alternative cropping strategy in the northern central upland of Vietnam: Above-ground carbon fixing capacity, accumulation of soil organic carbon, and socio-economic aspects. Agriculture, Ecosystems and Environment, 2012, 149, 80-90.	2.5	22
56	Effect of bioeffectors and recycled P-fertiliser products on the growth of spring wheat. Chemical and Biological Technologies in Agriculture, 2016, 3, .	1.9	22
57	Penicillium bilaii effects on maize growth and P uptake from soil and localized sewageÂsludge in a rhizobox experiment. Biology and Fertility of Soils, 2017, 53, 23-35.	2.3	22
58	Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems. Science of the Total Environment, 2018, 626, 328-339.	3.9	22
59	Long rotation swidden systems maintain higher carbon stocks than rubber plantations. Agriculture, Ecosystems and Environment, 2018, 256, 239-249.	2.5	22
60	Effect of 15n-labeled hairy vetch and nitrogen fertilization on maize nutrition and yield under no-tillage¹. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1337-1345.	0.5	22
61	Re-examining the glomalin-purity of glomalin-related soil protein fractions through immunochemical, lectin-affinity and soil labelling experiments. Soil Biology and Biochemistry, 2008, 40, 887-893.	4.2	21
62	†To Adopt or not to Adopt?' Legume Adoption in Maizeâ€Based Systems of Northern Thailand: Constraints and Potentials. Land Degradation and Development, 2017, 28, 731-741.	1.8	21
63	Reduced turning frequency and delayed poultry manure addition reduces N loss from sugarcane compost. Waste Management, 2017, 65, 169-177.	3.7	21
64	Effects of Penicillium bilaii on maize growth are mediated by available phosphorus. Plant and Soil, 2018, 431, 159-173.	1.8	21
65	Transitioning towards commercial upland agriculture: A comparative study in Northern Lao PDR. Njas - Wageningen Journal of Life Sciences, 2019, 88, 57-65.	7.9	19
66	The effect of Penicillium bilaii on wheat growth and phosphorus uptake as affected by soil pH, soil P and application of sewage sludge. Chemical and Biological Technologies in Agriculture, 2016, 3, .	1.9	18
67	Simultaneous Uptake of Multiple Amino Acids by Wheat. Journal of Plant Nutrition, 2009, 32, 725-740.	0.9	17
68	Increased retention of available nitrogen during thermal drying of solids of digested sewage sludge and manure by acid and zeolite addition. Waste Management, 2019, 100, 306-317.	3.7	17
69	Soil organic carbon stocks maintained despite intensification of shifting cultivation. Geoderma, 2021, 388, 114804.	2.3	17
70	The effects of management practices on soil organic carbon stocks of oil palm plantations in Sumatra, Indonesia. Journal of Environmental Management, 2021, 278, 111446.	3.8	17
71	Seed treatment with <i>Penicillium</i> sp. or Mn/Zn can alleviate the negative effects of cold stress in maize grown in soils dependent on soil fertility. Journal of Agronomy and Crop Science, 2018, 204, 603-612.	1.7	16
72	Shortâ€ŧerm fallow in extensive upland shifting cultivation systems of Northern Lao PDR: Its role in soil fertility restoration. Land Degradation and Development, 2018, 29, 2911-2919.	1.8	16

#	Article	IF	CITATIONS
73	Reducing greenhouse gas emissions and grain arsenic and lead levels without compromising yield in organically produced rice. Agriculture, Ecosystems and Environment, 2020, 295, 106922.	2.5	16
74	Methane Emission Factors from Vietnamese Rice Production: Pooling Data of 36 Field Sites for Meta-Analysis. Climate, 2020, 8, 74.	1.2	16
75	Economic, environmental and socio-cultural sustainability of three constructed wetlands in Thailand. Environment and Urbanization, 2012, 24, 305-323.	1.5	15
76	Prediction of changes in important physical parameters during composting of separated animal slurry solid fractions. Environmental Technology (United Kingdom), 2014, 35, 220-231.	1.2	15
77	Understanding livelihood strategy-poverty links: empirical evidence from central highlands of Ethiopia. Environment, Development and Sustainability, 2011, 13, 547-564.	2.7	12
78	Co-design and assessment of mitigation practices in rice production systems: A case study in northern Vietnam. Agricultural Systems, 2018, 167, 72-82.	3.2	11
79	Understanding the relationship between livelihood strategy and soil management: empirical insights from the central highlands of Ethiopia. Food Security, 2013, 5, 143-156.	2.4	9
80	Factors explaining variability in rice yields in a rain-fed lowland rice ecosystem in Southern Cambodia. Njas - Wageningen Journal of Life Sciences, 2016, 78, 129-137.	7.9	9
81	Paddy soil drainage influences residue carbon contribution to methane emissions. Journal of Environmental Management, 2018, 225, 168-176.	3.8	9
82	Formation and remobilisation of soil microbial residue. Effect of clay content and repeated additions of cellulose and sucrose. Biology and Fertility of Soils, 2011, 47, 863-874.	2.3	8
83	Barriers to Agro-Ecological Intensification of Smallholder Upland Farming Systems in Lao PDR. Agronomy, 2019, 9, 375.	1.3	8
84	Glacially abraded rock flour from Greenland: Potential for macronutrient supply to plants. Journal of Plant Nutrition and Soil Science, 2019, 182, 846-856.	1.1	8
85	Crop responses to 15N-labelled organic and inorganic nitrogen sources. Nutrient Cycling in Agroecosystems, 2008, 80, 49-60.	1.1	7
86	Agroecological intensification: Can organic conversion improve the production efficiency? A perspective from smallholder kale production systems Kenya. Cleaner Environmental Systems, 2021, 3, 100048.	2.2	5
87	Thinking Outside the Box: Interdisciplinary Integration of Teaching and Research on an Environment and Development Study Programme. Interdisciplinary Science Reviews, 2009, 34, 309-326.	1.0	4
88	Rural wood consumption patterns of local and immigrant households with differentiated access to resources in Xishuangbanna, Yunnan, China. Energy Policy, 2015, 80, 112-121.	4.2	4
89	Can silicon in glacial rock flour enhance phosphorus availability in acidic tropical soil?. Plant and Soil, 2022, 477, 241-258.	1.8	4
90	Effect of plant species and temperature on amino acid release from plant material. Agronomy for Sustainable Development, 2010, 30, 679-688.	2.2	3

#	Article	IF	CITATIONS
91	Detritusphere effects on P availability and C mineralization in soil. European Journal of Soil Science, 2015, 66, 155-165.	1.8	3
92	Bespoke Adaptation in Rural Africa? An Asset-Based Approach from Southern Ethiopia. European Journal of Development Research, 2019, 31, 413-432.	1.2	3
93	PROBLEM-BASED, INTERDISCIPLINARY FIELD-BASED COURSES: REFLECTIONS FROM SOUTH AFRICAN EXPERIENCES. Southern African Geographical Journal, 2008, 90, 122-133.	0.9	2
94	Clear the Mind of Pre-conceived Ideas and Get Your Hands Dirty! An Approach to Field-based Courses: The SLUSE-southern Africa Experience. Journal of Geography in Higher Education, 2008, 32, 441-457.	1.4	2
95	Effects of certifiedâ€organic production on supplier failures and potential income effects of supplier failures on producers: Evidence from vegetable and macadamia producers in Kenya. Agribusiness, 2020, 36, 751-769.	1.9	2
96	Form and development of nitrogen in plant waste extracts, effects of papain on nitrogen transfer and use of extracts for lettuce fertigation. Journal of Horticultural Science and Biotechnology, 2012, 87, 633-639.	0.9	1