Tatiana Kisseleva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1967800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PCL22-187: Functional Role of TREM2 in NASH and HCC Development. Journal of the National Comprehensive Cancer Network: JNCCN, 2022, 20, PCL22-187.	2.3	0
2	Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. Journal of Hepatology, 2021, 74, 156-167.	1.8	264
3	Liver fibrosis: Pathophysiology and clinical implications. WIREs Mechanisms of Disease, 2021, 13, e1499.	1.5	61
4	Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cellular and Molecular Immunology, 2021, 18, 18-37.	4.8	70
5	Molecular and cellular mechanisms of liver fibrosis and its regression. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 151-166.	8.2	746
6	Nonalcoholic Steatohepatitis and HCC in a Hyperphagic Mouse Accelerated by Western Diet. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 891-920.	2.3	17
7	Bile acid–activated macrophages promote biliary epithelial cell proliferation through integrin αvβ6 upregulation following liver injury. Journal of Clinical Investigation, 2021, 131, .	3.9	46
8	Previous liver regeneration induces fibro-protective mechanisms during thioacetamide-induced chronic liver injury. International Journal of Biochemistry and Cell Biology, 2021, 134, 105933.	1.2	2
9	Interleukin-17 in Liver Disease Pathogenesis. Seminars in Liver Disease, 2021, 41, 507-515.	1.8	27
10	Immunotherapy-based targeting of MSLN ⁺ activated portal fibroblasts is a strategy for treatment of cholestatic liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
11	Heterogeneity of HSCs in a Mouse Model of NASH. Hepatology, 2021, 74, 667-685.	3.6	71
12	Nondegradable Collagen Increases Liver Fibrosis but Not Hepatocellular Carcinoma in Mice. American Journal of Pathology, 2021, 191, 1564-1579.	1.9	10
13	Proceeding of the Ronald G. Thurman Memorial Symposium 2020. Juntendo Medical Journal, 2021, 67, 248-256.	0.1	0
14	Human Induced Pluripotent Stem Cell-Derived Macrophages Ameliorate Liver Fibrosis. Stem Cells, 2021, 39, 1701-1717.	1.4	21
15	PNPLA3 downregulation exacerbates the fibrotic response in human hepatic stellate cells. PLoS ONE, 2021, 16, e0260721.	1.1	3
16	The role of Mesothelin signaling in Portal Fibroblasts in the pathogenesis of cholestatic liver fibrosis. Frontiers in Molecular Biosciences, 2021, 8, 790032.	1.6	9
17	CRIg on liver macrophages clears pathobionts and protects against alcoholic liver disease. Nature Communications, 2021, 12, 7172.	5.8	22
18	IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. Journal of Hepatology, 2020, 72, 946-959.	1.8	113

#	Article	IF	CITATIONS
19	Neutralization of Oxidized Phospholipids Ameliorates Non-alcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 189-206.e8.	7.2	113
20	Pharmacological inhibition of P2RX7 ameliorates liver injury by reducing inflammation and fibrosis. PLoS ONE, 2020, 15, e0234038.	1.1	26
21	Inhibition of prolyl hydroxylases increases hepatic insulin and decreases glucagon sensitivity by an HIF-2α-dependent mechanism. Molecular Metabolism, 2020, 41, 101039.	3.0	12
22	Intestinal Virome in Patients With Alcoholic Hepatitis. Hepatology, 2020, 72, 2182-2196.	3.6	74
23	Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12. Journal of Hepatology, 2020, 73, 149-160.	1.8	35
24	Identification of Lineage-Specific Transcription Factors That Prevent Activation of Hepatic Stellate Cells and Promote Fibrosis Resolution. Gastroenterology, 2020, 158, 1728-1744.e14.	0.6	112
25	Mechanisms of liver fibrosis and its role in liver cancer. Experimental Biology and Medicine, 2020, 245, 96-108.	1.1	183
26	Traditional Chinese Medicine Fuzheng Huayu Prevents Development of Liver Fibrosis in Mice. Archives of Clinical and Biomedical Research, 2020, 04, 561-580.	0.1	12
27	The Crosstalk between Hepatocytes, Hepatic Macrophages, and Hepatic Stellate Cells Facilitates Alcoholic Liver Disease. Cell Metabolism, 2019, 30, 850-852.	7.2	21
28	Etiology-Specific Analysis of Hepatocellular Carcinoma Transcriptome Reveals Genetic Dysregulation in Pathways Implicated in Immunotherapy Efficacy. Cancers, 2019, 11, 1273.	1.7	10
29	Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice. Journal of Hepatology, 2019, 71, 573-585.	1.8	83
30	The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2019, 20, 1723.	1.8	192
31	Combatting Fibrosis: Exosomeâ€Based Therapies in the Regression of Liver Fibrosis. Hepatology Communications, 2019, 3, 180-192.	2.0	58
32	NADPH Oxidase 1 in Liver Macrophages Promotes Inflammation and Tumor Development in Mice. Gastroenterology, 2019, 156, 1156-1172.e6.	0.6	72
33	Infarct Fibroblasts Do Not Derive From Bone Marrow Lineages. Circulation Research, 2018, 122, 583-590.	2.0	65
34	Sphingosine kinase 1 promotes liver fibrosis by preventing miRâ€19bâ€3pâ€mediated inhibition of CCR2. Hepatology, 2018, 68, 1070-1086.	3.6	113
35	Human hepatic stellate cell isolation and characterization. Journal of Gastroenterology, 2018, 53, 6-17.	2.3	94
36	Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Annals of the Rheumatic Diseases, 2018, 77, 1636-1643.	0.5	123

#	Article	IF	CITATIONS
37	New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 2018, 560, 198-203.	13.7	722
38	Alcohol and hepatitis virus-dysregulated IncRNAs as potential biomarkers for hepatocellular carcinoma. Oncotarget, 2018, 9, 224-235.	0.8	14
39	Identification of Novel Fibrosis Modifiers by InÂVivo siRNA Silencing. Molecular Therapy - Nucleic Acids, 2017, 7, 314-323.	2.3	33
40	Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nature Communications, 2017, 8, 837.	5.8	174
41	Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice. International Journal of Molecular Medicine, 2017, 40, 454-464.	1.8	28
42	The origin of fibrogenic myofibroblasts in fibrotic liver. Hepatology, 2017, 65, 1039-1043.	3.6	168
43	Weight Loss Decreases Magnetic Resonance Elastography Estimated Liver Stiffness in Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 2017, 15, 463-464.	2.4	29
44	Synectin promotes fibrogenesis by regulating PDGFR isoforms through distinct mechanisms. JCI Insight, 2017, 2, .	2.3	16
45	Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. Journal of Clinical Investigation, 2017, 127, 1254-1270.	3.9	69
46	Intestinal fungi contribute to development of alcoholic liver disease. Journal of Clinical Investigation, 2017, 127, 2829-2841.	3.9	336
47	Alcohol-dysregulated microRNAs in hepatitis B virus-related hepatocellular carcinoma. PLoS ONE, 2017, 12, e0178547.	1.1	17
48	The Role of NADPH Oxidases (NOXs) in Liver Fibrosis and the Activation of Myofibroblasts. Frontiers in Physiology, 2016, 7, 17.	1.3	152
49	Promising Therapy Candidates for Liver Fibrosis. Frontiers in Physiology, 2016, 7, 47.	1.3	76
50	The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis. Differentiation, 2016, 92, 84-92.	1.0	93
51	Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice. Age, 2016, 38, 291-302.	3.0	63
52	The Role of IL-17 Signaling in Regulation of the Liver–Brain Axis and Intestinal Permeability in Alcoholic Liver Disease. Current Pathobiology Reports, 2016, 4, 27-35.	1.6	23
53	Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation. PLoS ONE, 2015, 10, e0129743.	1.1	159
54	Bone marrow-derived fibrocytes contribute to liver fibrosis. Experimental Biology and Medicine, 2015, 240, 691-700.	1.1	33

#	Article	IF	CITATIONS
55	Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology, 2015, 39, S60-S63.	0.7	179
56	Contribution of bone marrow-derived fibrocytes to liver fibrosis. Hepatobiliary Surgery and Nutrition, 2015, 4, 34-47.	0.7	26
57	The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Frontiers in Pharmacology, 2014, 5, 167.	1.6	97
58	New Approaches for Studying Alcoholic Liver Disease. Current Pathobiology Reports, 2014, 2, 171-183.	1.6	9
59	Does interleukin-17 play the villain in nonalcoholic steatohepatitis?. Hepatology, 2014, 59, 1671-1672.	3.6	9
60	Transcriptional Repression of the Transforming Growth Factor β (TGF-β) Pseudoreceptor BMP and Activin Membrane-bound Inhibitor (BAMBI) by Nuclear Factor κB (NF-κB) p50 Enhances TGF-β Signaling in Hepatic Stellate Cells. Journal of Biological Chemistry, 2014, 289, 7082-7091.	1.6	88
61	Origin of myofibroblasts in the fibrotic liver in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3297-305.	3.3	414
62	Reversibility of Liver Fibrosis and Inactivation of Fibrogenic Myofibroblasts. Current Pathobiology Reports, 2013, 1, 209-214.	1.6	85
63	Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9448-9453.	3.3	654
64	Interleukin-17 Signaling in Inflammatory, Kupffer Cells, and Hepatic Stellate Cells Exacerbates Liver Fibrosis in Mice. Gastroenterology, 2012, 143, 765-776.e3.	0.6	536
65	The phenotypic fate and functional role for bone marrow-derived stem cells in liver fibrosis. Journal of Hepatology, 2012, 56, 965-972.	1.8	81
66	What's new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 65-68.	1.4	182
67	Origin of myofibroblasts in liver fibrosis. Fibrogenesis and Tissue Repair, 2012, 5, S17.	3.4	99
68	Migration of Fibrocytes in Fibrogenic Liver Injury. American Journal of Pathology, 2011, 179, 189-198.	1.9	97
69	Fibrocyte-like cells recruited to the spleen support innate and adaptive immune responses to acute injury or infection. Journal of Molecular Medicine, 2011, 89, 997-1013.	1.7	38
70	The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91phox mediate hepatic fibrosis in mice. Hepatology, 2011, 53, 1730-1741.	3.6	176
71	Anti-fibrogenic strategies and the regression of fibrosis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 305-317.	1.0	144
72	Contribution of Fibrocytes to Liver Fibrosis: Current Concept and Future Prospect. , 2011, , 243-251.		0

#	Article	IF	CITATIONS
73	Genetic Labeling Does Not Detect Epithelial-to-Mesenchymal Transition of Cholangiocytes in Liver Fibrosis in Mice. Gastroenterology, 2010, 139, 987-998.	0.6	200
74	c-Jun N-terminal Kinase-1 From Hematopoietic Cells Mediates Progression From Hepatic Steatosis to Steatohepatitis and Fibrosis in Mice. Gastroenterology, 2009, 137, 1467-1477.e5.	0.6	171
75	Mechanisms of Fibrogenesis. Experimental Biology and Medicine, 2008, 233, 109-122.	1.1	416
76	Fibrogenesis of Parenchymal Organs. Proceedings of the American Thoracic Society, 2008, 5, 338-342.	3.5	134
77	Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, S73-S78.	1.4	254
78	Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. Journal of Hepatology, 2006, 45, 429-438.	1.8	439
79	Hepatic stellate cells and the reversal of fibrosis. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, S84-S87.	1.4	230