
Max Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1967487/publications.pdf Version: 2024-02-01

MAYLONES

#	Article	IF	CITATIONS
1	Cannabis, the multibillion dollar plant that no genebank wanted. Genome, 2022, 65, 1-5.	0.9	14
2	Accumulation of somatic mutations leads to genetic mosaicism in cannabis. Plant Genome, 2022, 15, e20169.	1.6	16
3	A Noninvasive Gas Exchange Method to Test and Model Photosynthetic Proficiency and Growth Rates of In Vitro Plant Cultures: Preliminary Implication for Cannabis sativa L Biology, 2022, 11, 729.	1.3	11
4	Machine learning: its challenges and opportunities in plant system biology. Applied Microbiology and Biotechnology, 2022, 106, 3507-3530.	1.7	26
5	Photoperiodic Response of In Vitro Cannabis sativa Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 108-113.	0.5	17
6	Synergizing Off-Target Predictions for In Silico Insights of CENH3 Knockout in Cannabis through CRISPR/Cas. Molecules, 2021, 26, 2053.	1.7	27
7	Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. International Journal of Molecular Sciences, 2021, 22, 5671.	1.8	50
8	DKW basal salts improve micropropagation and callogenesis compared with MS basal salts in multiple commercial cultivars of <i>Cannabis sativa</i> . Botany, 2021, 99, 269-279.	0.5	29
9	Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm. Applied Microbiology and Biotechnology, 2021, 105, 5201-5212.	1.7	37
10	Modeling and optimizing in vitro seed germination of industrial hemp (Cannabis sativa L.). Industrial Crops and Products, 2021, 170, 113753.	2.5	35
11	Comparative Analysis of Machine Learning and Evolutionary Optimization Algorithms for Precision Micropropagation of Cannabis sativa: Prediction and Validation of in vitro Shoot Growth and Development Based on the Optimization of Light and Carbohydrate Sources. Frontiers in Plant Science, 2021, 12, 757869.	1.7	28
12	Machine Learning-Mediated Development and Optimization of Disinfection Protocol and Scarification Method for Improved In Vitro Germination of Cannabis Seeds. Plants, 2021, 10, 2397.	1.6	30
13	Optimisation of Nitrogen, Phosphorus, and Potassium for Soilless Production of Cannabis sativa in the Flowering Stage Using Response Surface Analysis. Frontiers in Plant Science, 2021, 12, 764103.	1.7	24
14	Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Applied Microbiology and Biotechnology, 2020, 104, 9449-9485.	1.7	108
15	Recent advances in cannabis biotechnology. Industrial Crops and Products, 2020, 158, 113026.	2.5	59
16	Improved in vitro rooting in liquid culture using a two piece scaffold system. Engineering in Life Sciences, 2020, 20, 126-132.	2.0	12
17	Improving callus regeneration of Miscanthus × giganteus J.M.Greef, Deuter ex Hodk., Renvoize â€~M1 callus by inhibition of the phenylpropanoid biosynthetic pathway. In Vitro Cellular and Developmental Biology - Plant, 2019, 55, 109-120.	61' 0.9	4
18	Early physiological and biochemical responses of soyabean to neighbouring weeds under resourceâ€independent competition. Weed Research, 2019, 59, 288-299.	0.8	10

Max Jones

#	Article	IF	CITATIONS
19	Regeneration of shoots from immature and mature inflorescences of <i>Cannabis sativa</i> . Canadian Journal of Plant Science, 2019, 99, 556-559.	0.3	22
20	Indoleamines and phenylpropanoids modify development in the bryophyte Plagiomnium cuspidatum (Hedw.) T.J. Kop. In Vitro Cellular and Developmental Biology - Plant, 2018, 54, 454-464.	0.9	5
21	Isolation and identification of mosquito biting deterrents from the North American mosquito repelling folk remedy plant, Matricaria discoidea DC PLoS ONE, 2018, 13, e0206594.	1.1	5
22	Application of 3D printing to prototype and develop novel plant tissue culture systems. Plant Methods, 2017, 13, 6.	1.9	40
23	High light intensity stress as the limiting factor in micropropagation of sugar maple (Acer saccharum) Tj ETQq1	1 0.78431 1.2	.4 rgBT /Over
24	Isolation and Identification of Mosquito (<i>Aedes aegypti</i>) Biting-Deterrent Compounds from the Native American Ethnobotanical Remedy Plant <i>Hierochloë odorata</i> (Sweetgrass). Journal of Agricultural and Food Chemistry, 2016, 64, 8352-8358.	2.4	19
25	Protoplast-to-plant regeneration of American elm (Ulmus americana). Protoplasma, 2015, 252, 925-931.	1.0	20
26	Quantification of pyrrolizidine alkaloids in North American plants and honey by LC-MS: single laboratory validation. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1-7.	1.1	18
27	Galanthamine, an anti-cholinesterase drug, effects plant growth and development inArtemisia tridentataNutt. via modulation of auxin and neurotransmitter signaling. Plant Signaling and Behavior, 2014, 9, e28645.	1.2	10
28	Establishment of invasive and non-invasive reporter systems to investigate American elm–Ophiostoma novo-ulmi interactions. Fungal Genetics and Biology, 2014, 71, 32-41.	0.9	9
29	Identification of pro-vitamin A carotenoid-rich cultivars of breadfruit (Artocarpus, Moraceae). Journal of Food Composition and Analysis, 2013, 31, 51-61.	1.9	23
30	Investigating the roles of phenylpropanoids in the growth and development of Zea mays L In Vitro Cellular and Developmental Biology - Plant, 2013, 49, 765-772.	0.9	4
31	Inhibition of Phenylpropanoid Biosynthesis in Artemisia annua L.: A Novel Approach to Reduce Oxidative Browning in Plant Tissue Culture. PLoS ONE, 2013, 8, e76802.	1.1	86
32	In vitro conservation of American elm (<i>Ulmus americana</i>): potential role of auxin metabolism in sustained plant proliferation. Canadian Journal of Forest Research, 2012, 42, 686-697.	0.8	38
33	Isolation and Identification of Mosquito (Aedes aegypti) Biting Deterrent Fatty Acids from Male Inflorescences of Breadfruit (Artocarpus altilis (Parkinson) Fosberg). Journal of Agricultural and Food Chemistry, 2012, 60, 3867-3873.	2.4	34
34	Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana). BMC Plant Biology, 2012, 12, 75.	1.6	24
35	Elicitation of secondary metabolism in <i>Echinacea purpurea</i> L. by gibberellic acid and triazoles. Engineering in Life Sciences, 2009, 9, 205-210.	2.0	32
36	In vitro propagation of cherry birch (<i>Betula lenta</i> L.). Canadian Journal of Plant Science, 0, , 571-578.	0.3	17

#	Article	IF	CITATIONS
37	Flower power: floral reversion as a viable alternative to nodal micropropagation in Cannabis sativa In Vitro Cellular and Developmental Biology - Plant, 0, , 1.	0.9	6