M Celeste Simon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1967453/publications.pdf

Version: 2024-02-01

94 papers

18,479 citations

46918 47 h-index 90 g-index

97 all docs

97
docs citations

97 times ranked 25206 citing authors

#	Article	IF	CITATIONS
1	Hypoxia-Inducible Factors in Cancer. Cancer Research, 2022, 82, 195-196.	0.4	15
2	Glucagon signaling via supraphysiologic GCGR can reduce cell viability without stimulating gluconeogenic gene expression in liver cancer cells. Cancer & Metabolism, 2022, 10, 4.	2.4	2
3	NAD+ regeneration drives cancer cell proliferation. Nature Metabolism, 2022, 4, 647-648.	5.1	3
4	GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metabolism, 2022, 34, 1151-1167.e7.	7.2	40
5	Glycogen metabolism is dispensable for tumour progression in clear cell renal cell carcinoma. Nature Metabolism, 2021, 3, 327-336.	5.1	21
6	m6A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nature Cell Biology, 2021, 23, 355-365.	4.6	71
7	A powerful tool to study metabolic reprogramming in pediatric cancers. Med, 2021, 2, 350-352.	2.2	O
8	Hypoxia-Inducible Factor Signaling in Macrophages Promotes Lymphangiogenesis in Leishmania major Infection. Infection and Immunity, 2021, 89, e0012421.	1.0	14
9	Cholesterol Auxotrophy as a Targetable Vulnerability in Clear Cell Renal Cell Carcinoma. Cancer Discovery, 2021, 11, 3106-3125.	7.7	44
10	PIK3R3, part of the regulatory domain of PI3K, is upregulated in sarcoma stem-like cells and promotes invasion, migration, and chemotherapy resistance. Cell Death and Disease, 2021, 12, 749.	2.7	16
11	Metabolic Enzyme DLST Promotes Tumor Aggression and Reveals a Vulnerability to OXPHOS Inhibition in High-Risk Neuroblastoma. Cancer Research, 2021, 81, 4417-4430.	0.4	31
12	Moonlighting functions of metabolic enzymes and metabolites in cancer. Molecular Cell, 2021, 81, 3760-3774.	4.5	65
13	PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas. Oncogenesis, 2021, 10, 12.	2.1	38
14	Cell-Intrinsic Tumorigenic Functions of PPAR \hat{I}^3 in Bladder Urothelial Carcinoma. Molecular Cancer Research, 2021, 19, 598-611.	1.5	7
15	ASS1 and ASL suppress growth in clear cell renal cell carcinoma via altered nitrogen metabolism. Cancer & Metabolism, 2021, 9, 40.	2.4	14
16	Fructose-1,6-Bisphosphatase 2 Inhibits Sarcoma Progression by Restraining Mitochondrial Biogenesis. Cell Metabolism, 2020, 31, 174-188.e7.	7.2	51
17	Clarifying the translational potential of B-109. Nature Chemical Biology, 2020, 16, 1152-1152.	3.9	2
18	The tumor microenvironment. Current Biology, 2020, 30, R921-R925.	1.8	1,002

#	Article	IF	Citations
19	DNA methylation repels binding of hypoxia-inducible transcription factors to maintain tumor immunotolerance. Genome Biology, 2020, 21, 182.	3.8	39
20	FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nature Cell Biology, 2020, 22, 728-739.	4.6	110
21	Tumor-Derived Retinoic Acid Regulates Intratumoral Monocyte Differentiation to Promote Immune Suppression. Cell, 2020, 180, 1098-1114.e16.	13.5	140
22	Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature Reviews Molecular Cell Biology, 2020, 21, 268-283.	16.1	595
23	Cancer Cells Don't Live Alone: Metabolic Communication within Tumor Microenvironments. Developmental Cell, 2020, 54, 183-195.	3.1	114
24	Cellular adaptation to oxygen deficiency beyond the Nobel award. Nature Communications, 2020, 11, 607.	5.8	15
25	Targeting glutamine metabolism slows soft tissue sarcoma growth. Nature Communications, 2020, 11, 498.	5.8	63
26	BACH1 Orchestrates Lung Cancer Metastasis. Cell, 2019, 178, 265-267.	13.5	21
27	Even Cancer Cells Watch Their Cholesterol!. Molecular Cell, 2019, 76, 220-231.	4.5	118
28	Gamma-Glutamyltransferase 1 Promotes Clear Cell Renal Cell Carcinoma Initiation and Progression. Molecular Cancer Research, 2019, 17, 1881-1892.	1.5	34
29	Endothelial Hypoxia-Inducible Factor-2α Is Required for the Maintenance of Airway Microvasculature. Circulation, 2019, 139, 502-517.	1.6	35
30	Perseverance when the going gets tough. Nature Cell Biology, 2018, 20, 1008-1008.	4.6	0
31	Myeloid Cell Hypoxia-Inducible Factors Promote Resolution of Inflammation in Experimental Colitis. Frontiers in Immunology, 2018, 9, 2565.	2.2	24
32	Triglycerides Promote Lipid Homeostasis during Hypoxic Stress by Balancing Fatty Acid Saturation. Cell Reports, 2018, 24, 2596-2605.e5.	2.9	208
33	Genetic and metabolic hallmarks of clear cell renal cell carcinoma. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 23-31.	3.3	92
34	Glutathione metabolism in cancer progression and treatment resistance. Journal of Cell Biology, 2018, 217, 2291-2298.	2.3	762
35	Hidden features: exploring the non-canonical functions of metabolic enzymes. DMM Disease Models and Mechanisms, 2018, 11 , .	1.2	41
36	Transcriptional control of kidney cancer. Science, 2018, 361, 226-227.	6.0	9

#	Article	IF	CITATIONS
37	Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity. Cell Metabolism, 2018, 27, 1263-1280.e6.	7.2	85
38	PPAR \hat{I}^3 is dispensable for clear cell renal cell carcinoma progression. Molecular Metabolism, 2018, 14, 139-149.	3.0	17
39	Platelet-derived growth factor receptor- $\hat{l}\pm$ and - \hat{l}^2 promote cancer stem cell phenotypes in sarcomas. Oncogenesis, 2018, 7, 47.	2.1	28
40	Hif1 \hat{l} ± Deletion Limits Tissue Regeneration via Aberrant B Cell Accumulation in Experimental Pancreatitis. Cell Reports, 2018, 23, 3457-3464.	2.9	8
41	IRE1α RNase–dependent lipid homeostasis promotes survival in Myc-transformed cancers. Journal of Clinical Investigation, 2018, 128, 1300-1316.	3.9	96
42	Metabolism, Inflammation, and Tumor Progression. FASEB Journal, 2018, 32, 250.2.	0.2	0
43	Ischemia Induces Quiescence and Autophagy Dependence in Hepatocellular Carcinoma. Radiology, 2017, 283, 702-710.	3.6	43
44	Oxygen availability and metabolic reprogramming in cancer. Journal of Biological Chemistry, 2017, 292, 16825-16832.	1.6	145
45	E2A Antagonizes PU.1 Activity through Inhibition of DNA Binding. BioMed Research International, 2016, 2016, 1-11.	0.9	7
46	Oxygen availability and metabolic adaptations. Nature Reviews Cancer, 2016, 16, 663-673.	12.8	318
47	Intratumoral oxygen gradients mediate sarcoma cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9292-9297.	3.3	105
48	The Hypoxia Response Pathways — Hats Off!. New England Journal of Medicine, 2016, 375, 1687-1689.	13.9	38
49	<i>Hif1a</i> Deletion Reveals Pro-Neoplastic Function of B Cells in Pancreatic Neoplasia. Cancer Discovery, 2016, 6, 256-269.	7.7	187
50	Multimodal targeting of tumor vasculature and cancer stem-like cells in sarcomas with VEGF-A inhibition, HIF-11± inhibition, and hypoxia-activated chemotherapy. Oncotarget, 2016, 7, 42844-42858.	0.8	18
51	The aryl hydrocarbon receptor nuclear translocator is an essential regulator of murine hematopoietic stem cell viability. Blood, 2015, 125, 3263-3272.	0.6	37
52	Hypoxia response becomes crystal clear. Nature, 2015, 524, 298-299.	13.7	2
53	Deregulation of the Hippo pathway in soft-tissue sarcoma promotes FOXM1 expression and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3402-11.	3.3	90
54	HIF modulation of Wnt signaling regulates skeletal myogenesis <i>in vivo</i> . Development (Cambridge), 2015, 142, 2405-12.	1.2	60

#	Article	IF	CITATIONS
55	Sprouty2 Drives Drug Resistance and Proliferation in Glioblastoma. Molecular Cancer Research, 2015, 13, 1227-1237.	1.5	29
56	Segmental Transarterial Embolization in a Translational Rat Model of Hepatocellular Carcinoma. Journal of Vascular and Interventional Radiology, 2015, 26, 1229-1237.	0.2	32
57	Feedback circuitry between <i>miR-218</i> repression and RTK activation in glioblastoma. Science Signaling, 2015, 8, ra42.	1.6	19
58	HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer Discovery, 2015, 5, 652-667.	7.7	278
59	Oncogenes strike a balance between cellular growth and homeostasis. Seminars in Cell and Developmental Biology, 2015, 43, 3-10.	2.3	36
60	MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metabolism, 2015, 22, 1009-1019.	7.2	217
61	SnapShot: Hypoxia-Inducible Factors. Cell, 2015, 163, 1288-1288.e1.	13.5	54
62	Hypoxia-Inducible Factors Regulate Filaggrin Expression and Epidermal Barrier Function. Journal of Investigative Dermatology, 2015, 135, 454-461.	0.3	41
63	Multivariate signaling regulation by SHP2 differentially controls proliferation and therapeutic response in glioma cells. Journal of Cell Science, 2014, 127, 3555-67.	1.2	32
64	Nontranscriptional Role of Hif- $1\hat{l}_{\pm}$ in Activation of \hat{l}_{3} -Secretase and Notch Signaling in Breast Cancer. Cell Reports, 2014, 8, 1077-1092.	2.9	122
65	Serine Catabolism Regulates Mitochondrial Redox Control during Hypoxia. Cancer Discovery, 2014, 4, 1406-1417.	7.7	342
66	Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature, 2014, 513, 251-255.	13.7	416
67	Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends in Cell Biology, 2014, 24, 472-478.	3.6	384
68	Hypoxia-Dependent Modification of Collagen Networks Promotes Sarcoma Metastasis. Cancer Discovery, 2013, 3, 1190-1205.	7.7	224
69	A liver Hif-2α–Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nature Medicine, 2013, 19, 1331-1337.	15.2	90
70	Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes and Development, 2013, 27, 1115-1131.	2.7	170
71	A Knock-in Mouse Model of Human PHD2 Gene-associated Erythrocytosis Establishes a Haploinsufficiency Mechanism. Journal of Biological Chemistry, 2013, 288, 33571-33584.	1.6	43
72	ATF4 Regulates MYC-Mediated Neuroblastoma Cell Death upon Glutamine Deprivation. Cancer Cell, 2012, 22, 631-644.	7.7	309

#	Article	IF	Citations
73	HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nature Reviews Cancer, 2012, 12, 9-22.	12.8	1,391
74	Hypoxia-Induced Angiogenesis: Good and Evil. Genes and Cancer, 2011, 2, 1117-1133.	0.6	893
75	Oxygen Availability and Stem Cells: Impact On Development and Disease. Blood, 2011, 118, SCI-37-SCI-37.	0.6	0
76	HIF-2α deletion promotes Kras-driven lung tumor development. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14182-14187.	3.3	117
77	Functional Analysis of the Cdk7·Cyclin H·Mat1 Complex in Mouse Embryonic Stem Cells and Embryos. Journal of Biological Chemistry, 2010, 285, 15587-15598.	1.6	27
78	The role of oxygen availability in embryonic development and stem cell function. Nature Reviews Molecular Cell Biology, 2008, 9, 285-296.	16.1	806
79	HIF-α Effects on c-Myc Distinguish Two Subtypes of Sporadic VHL-Deficient Clear Cell Renal Carcinoma. Cancer Cell, 2008, 14, 435-446.	7.7	441
80	Hypoxia-mediated Selective mRNA Translation by an Internal Ribosome Entry Site-independent Mechanism. Journal of Biological Chemistry, 2008, 283, 16309-16319.	1.6	108
81	Oxygen Sensing by the HIF Pathway. FASEB Journal, 2008, 22, 249.3.	0.2	0
82	Multiple Factors Affecting Cellular Redox Status and Energy Metabolism Modulate Hypoxia-Inducible Factor Prolyl Hydroxylase Activity In Vivo and In Vitro. Molecular and Cellular Biology, 2007, 27, 912-925.	1.1	295
83	Coming up for air: HIF-1 and mitochondrial oxygen consumption. Cell Metabolism, 2006, 3, 150-151.	7.2	107
84	Hypoxia-Induced Energy Stress Regulates mRNA Translation and Cell Growth. Molecular Cell, 2006, 21, 521-531.	4.5	541
85	PML inhibits HIF- $1\hat{l}\pm$ translation and neoangiogenesis through repression of mTOR. Nature, 2006, 442, 779-785.	13.7	354
86	Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF- \hat{l}_{\pm} prolyl hydroxylase. Cancer Cell, 2005, 7, 77-85.	7.7	1,764
87	Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metabolism, 2005, 1, 401-408.	7.2	1,321
88	Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-1± activation. Cell Metabolism, 2005, 1, 393-399.	7.2	566
89	Gfi-1 Represses PU.1 Activity To Promote Granulocyte over Macrophage Differentiation Blood, 2005, 106, 2722-2722.	0.6	0
90	Siah Proteins, HIF Prolyl Hydroxylases, and the Physiological Response to Hypoxia. Cell, 2004, 117, 851-853.	13.5	23

#	Article	IF	CITATIONS
91	E47 Binds to PU.1 Inhibiting Its Ability To Bind DNA and Activate Gene Expression Blood, 2004, 104, 1609-1609.	0.6	O
92	Differential Roles of Hypoxia-Inducible Factor $1\hat{l}\pm$ (HIF- $1\hat{l}\pm$) and HIF- $2\hat{l}\pm$ in Hypoxic Gene Regulation. Molecular and Cellular Biology, 2003, 23, 9361-9374.	1.1	1,234
93	A Novel Hypoxia-inducible Factor-independent Hypoxic Response Regulating Mammalian Target of Rapamycin and Its Targets. Journal of Biological Chemistry, 2003, 278, 29655-29660.	1.6	402
94	Hypoxia-Inducible Factor and the Development of Stem Cells of the Cardiovascular System. Stem Cells, 2001, 19, 279-286.	1.4	86