Martin Snow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1967294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solar-Cycle Variability Results from the Solar Radiation and Climate Experiment (SORCE) Mission. Solar Physics, 2022, 297, 43.	1.0	14
2	Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach. Light: Science and Applications, 2022, 11, 79.	7.7	21
3	SOLar-STellar Irradiance Comparison Experiment II (SOLSTICE II): End-of-Mission Validation of the SOLSTICE Technique. Solar Physics, 2022, 297, 1.	1.0	9
4	Overview of the Solar Radiation and Climate Experiment (SORCE) Seventeen-Year Mission. Solar Physics, 2021, 296, 127.	1.0	16
5	SOLAR-v: A new solar spectral irradiance dataset based on SOLAR/SOLSPEC observations during solar cycle 24. Astronomy and Astrophysics, 2021, 645, A2.	2.1	4
6	GOES-R Series Solar X-ray and Ultraviolet Irradiance. , 2020, , 233-242.		5
7	The Flare Irradiance Spectral Modelâ€Version 2 (FISM2). Space Weather, 2020, 18, e2020SW002588.	1.3	50
8	A New Version of the SOLAR-ISS Spectrum Covering the 165 – 3000 nm Spectral Region. Solar Physic 2020, 295, 1.	^{s,} 1.0	11
9	Solar Irradiance Variability: Comparisons of Models and Measurements. Earth and Space Science, 2019, 6, 2525-2555.	1.1	36
10	Multiple Scattering Effects in the Interplanetary Medium: Evaluation Using SOHO SWAN and MAVEN EUVM Lyman <i>α</i> Measurements. Journal of Geophysical Research: Space Physics, 2019, 124, 3949-3960.	0.8	2
11	SORCEâ€Based Solar Spectral Irradiance (SSI) Record for Input Into Chemistryâ€Climate Studies. Earth and Space Science, 2019, 6, 2487-2507.	1.1	8
12	An Improved Lymanâ€Alpha Composite. Earth and Space Science, 2019, 6, 2263-2272.	1.1	56
13	A Revised Magnesium II Coreâ€toâ€Wing Ratio From SORCE SOLSTICE. Earth and Space Science, 2019, 6, 2106-2114.	1.1	13
14	The GOES-R EUVS model for EUV irradiance variability. Journal of Space Weather and Space Climate, 2019, 9, A43.	1.1	14
15	Decoupling Solar Variability and Instrument Trends Using the Multiple Same-Irradiance-Level (MuSIL) Analysis Technique. Solar Physics, 2018, 293, 76.	1.0	43
16	An Empirical Model of the Variation of the Solar Lymanâ€ <i>α</i> Spectral Irradiance. Geophysical Research Letters, 2018, 45, 2138-2144.	1.5	11
17	Magnesium II Index measurements from SORCE SOLSTICE and GOES-16 EUVS. Proceedings of the International Astronomical Union, 2018, 13, 167-168.	0.0	1
18	Ultraviolet Solar Spectral Irradiance Variation on Solar Cycle Timescales. Proceedings of the International Astronomical Union, 2018, 13, 203-208.	0.0	3

MARTIN SNOW

#	Article	IF	CITATIONS
19	Solar Ultraviolet Irradiance Observations of the Solar Flares During the Intense September 2017 Storm Period. Space Weather, 2018, 16, 1470-1487.	1.3	34
20	Solar Irradiance Variability: Current Understanding from Observations and Future Directions for Model Improvements. , 2018, , .		0
21	Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162, 122-135.	0.6	14
22	Solar Spectral Proxy Irradiance from GOES (SSPRING): a model for solar EUV irradiance. Journal of Space Weather and Space Climate, 2016, 6, A10.	1.1	8
23	A Solar Irradiance Climate Data Record. Bulletin of the American Meteorological Society, 2016, 97, 1265-1282.	1.7	227
24	A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals. Solar Physics, 2015, 290, 2649-2676.	1.0	24
25	The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nature Communications, 2015, 6, 6491.	5.8	97
26	The Infrared Solar Spectrum Measured by the SOLSPEC Spectrometer Onboard the International Space Station. Solar Physics, 2015, 290, 1581-1600.	1.0	14
27	Solar-induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: Drivers of polar mesospheric cloud variability. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 134, 56-68.	0.6	26
28	Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24. Journal of Space Weather and Space Climate, 2014, 4, A04.	1.1	78
29	Far- and Extreme-UV Solar Spectral Irradiance and Radiance from Simplified Atmospheric Physical Models. Solar Physics, 2014, 289, 515-544.	1.0	37
30	Midlatitude atmospheric OH response to the most recent 11-y solar cycle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2023-2028.	3.3	17
31	Lyman-Î \pm Models for LRO LAMP from MESSENGER MASCS and SOHO SWAN Data. , 2013, , 163-175.		6
32	A New Catalog of Ultraviolet Stellar Spectra for Calibration. , 2013, , 191-226.		23
33	Lyman-Î \pm Observations of Comet Holmes from SORCE SOLSTICE and SOHO SWAN. , 2013, , 255-267.		3
34	Far- and Extreme-UV Solar Spectral Irradiance and Radiance from Simplified Atmospheric Physical Models. , 2013, , 79-108.		0
35	High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. Journal of Geophysical Research, 2011, 116, .	3.3	157
36	The Solar Cycle 23 – 24 Minimum. A Benchmark in Solar Variability and Effects in the Heliosphere. Sc Physics, 2011, 274, 159-162.	lar 1.0	16

MARTIN SNOW

#	Article	IF	CITATIONS
37	Monitoring the solar UV irradiance spectrum from the observation of a few passbands. Astronomy and Astrophysics, 2011, 528, A68.	2.1	20
38	Solar spectral irradiance variability in the ultraviolet from SORCE and UARS SOLSTICE. Advances in Space Research, 2010, 46, 296-302.	1.2	23
39	The SORCE SIM Solar Spectrum: ComparisonÂwithÂRecentÂObservations. Solar Physics, 2010, 263, 3-24.	1.0	77
40	The Extreme Ultraviolet Sensor (EUVS) for GOES-R. Proceedings of SPIE, 2009, , .	0.8	23
41	Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI). Geophysical Research Letters, 2009, 36, .	1.5	171
42	EUVS-C: the measurement of the magnesium II index for GOES-R EXIS. , 2009, , .		6
43	Chromospheric Lines as Diagnostics of Stellar Oscillations. Globular Clusters - Guides To Galaxies, 2008, , 311-312.	0.1	Ο
44	Absolute ultraviolet irradiance of the moon from SORCE SOLSTICE. , 2007, , .		2
45	Asteroseismic signatures of stellar magnetic activity cycles. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 379, L16-L20.	1.2	40
46	High time cadence solar Magnesium II index monitor. , 2005, 5901, 354.		4
47	Solar–Stellar Irradiance Comparison Experiment II (SOLSTICE II): Pre-Launch and On-Orbit Calibrations. Solar Physics, 2005, 230, 259-294.	1.0	73
48	The Mg II Index from SORCE. Solar Physics, 2005, 230, 325-344.	1.0	54
49	Solar–Stellar Irradiance Comparison Experiment II (Solstice II): Examination of the Solar–Stellar Comparison Technique. Solar Physics, 2005, 230, 295-324.	1.0	68
50	Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): Pre-Launch and On-Orbit Calibrations. , 2005, , 259-294.		2
51	Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): Examination of the Solar-Stellar Comparison Technique. , 2005, , 295-324.		3
52	The Mg II Index from SORCE. , 2005, , 325-344.		7
53	Comet Hyakutake (C/1996 B2): Spectacular disconnection event and the latitudinal structure of the solar wind. Planetary and Space Science, 2004, 52, 313-323.	0.9	8
54	Solar irradiance variability during the October 2003 solar storm period. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	166

MARTIN SNOW

#	Article	IF	CITATIONS
55	Large-Scale Structures in Comet Hale–Bopp. Earth, Moon and Planets, 2002, 90, 15-33.	0.3	3
56	Large-Scale Structures in Comet Hale-Bopp. , 2002, , 15-33.		1
57	The solar cycle variation in ultraviolet irradiance. Advances in Space Research, 2001, 27, 1927-1932.	1.2	51
58	Goddard High Resolution Spectrograph Observations of NGC 4151. Astronomical Journal, 2001, 121, 2999-3000.	1.9	3
59	Heliospheric Latitude Variations of Properties of Cometary Plasma Tails: A Test of the Ulysses Comet Watch Paradigm. Icarus, 2000, 148, 52-64.	1.1	29
60	Disconnection Events (DEs) in Halley's Comet 1985–1986:. Icarus, 1999, 137, 69-83.	1.1	29
61	Comet de Vico (122P) and latitude variations of plasma phenomena. Planetary and Space Science, 1997, 45, 813-819.	0.9	12
62	The Disconnection Event of comet Halley on 1986 March 16.0. Astronomical Journal, 1994, 107, 1591.	1.9	11
63	Observations of 3C 273 with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. Astronomical Journal, 1993, 105, 831.	1.9	11
64	The disconnection events of 1986 April 13-18 and the cessation of plasma tail activity in Comet Halley in 1986 May. Astrophysical Journal, 1993, 414, 883.	1.6	10