Sai Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/196645/publications.pdf

Version: 2024-02-01

71 papers	663 citations	12 h-index	752256 20 g-index
73	73	73	503
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The role of host eIF2α in viral infection. Virology Journal, 2020, 17, 112.	1.4	60
2	SOCS Proteins Participate in the Regulation of Innate Immune Response Caused by Viruses. Frontiers in Immunology, 2020, 11, 558341.	2.2	41
3	Comparative analysis of virus-host interactions caused by a virulent and an attenuated duck hepatitis A virus genotype 1. PLoS ONE, 2017, 12, e0178993.	1.1	35
4	Viral-host interaction in kidney reveals strategies to escape host immunity and persistently shed virus to the urine. Oncotarget, 2017, 8, 7336-7349.	0.8	28
5	Development and evaluation of indirect ELISAs for the detection of IgG, IgM and IgA1 against duck hepatitis A virus 1. Journal of Virological Methods, 2016, 237, 79-85.	1.0	26
6	The neglected avian hepatotropic virus induces acute and chronic hepatitis in ducks: an alternative model for hepatology. Oncotarget, 2017, 8, 81838-81851.	0.8	25
7	Virologic and Immunologic Characteristics in Mature Ducks with Acute Duck Hepatitis A Virus 1 Infection. Frontiers in Immunology, 2017, 8, 1574.	2.2	23
8	Structures and Functions of the 3′ Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Frontiers in Cellular and Infection Microbiology, 2020, 10, 453.	1.8	23
9	Enterovirus Replication Organelles and Inhibitors of Their Formation. Frontiers in Microbiology, 2020, 11, 1817.	1.5	21
10	The Role of VP16 in the Life Cycle of Alphaherpesviruses. Frontiers in Microbiology, 2020, 11, 1910.	1.5	21
11	Distribution and association of antimicrobial resistance and virulence traits in Escherichia coli isolates from healthy waterfowls in Hainan, China. Ecotoxicology and Environmental Safety, 2021, 220, 112317.	2.9	21
12	Apoptosis and Autophagy in Picornavirus Infection. Frontiers in Microbiology, 2019, 10, 2032.	1.5	20
13	The Pivotal Roles of US3 Protein in Cell-to-Cell Spread and Virion Nuclear Egress of Duck Plague Virus. Scientific Reports, 2020, 10, 7181.	1.6	15
14	Incompatible Translation Drives a Convergent Evolution and Viral Attenuation During the Development of Live Attenuated Vaccine. Frontiers in Cellular and Infection Microbiology, 2018, 8, 249.	1.8	13
15	Alphaherpesvirus Major Tegument Protein VP22: Its Precise Function in the Viral Life Cycle. Frontiers in Microbiology, 2020, 11, 1908.	1.5	13
16	Host shutoff activity of VHS and SOX-like proteins: role in viral survival and immune evasion. Virology Journal, 2020, 17, 68.	1.4	13
17	Regulation of Apoptosis by Enteroviruses. Frontiers in Microbiology, 2020, 11, 1145.	1.5	11
18	Biochemical characterization of recombinant Avihepatovirus 3C protease and its localization. Virology Journal, 2019, 16, 54.	1.4	10

#	Article	IF	CITATIONS
19	Immunogenicity and protection efficacy of a Salmonella enterica serovar Typhimurium fnr, arcA and fliC mutant. Vaccine, 2021, 39, 588-595.	1.7	10
20	The intracellular domain of duck plague virus glycoprotein E affects UL11 protein incorporation into viral particles. Veterinary Microbiology, 2021, 257, 109078.	0.8	10
21	Transcriptome analysis of duck embryo fibroblasts for the dynamic response to duck tembusu virus infection and dual regulation of apoptosis genes. Aging, 2020, 12, 17503-17527.	1.4	10
22	The First Nonmammalian Pegivirus Demonstrates Efficient In Vitro Replication and High Lymphotropism. Journal of Virology, 2020, 94, .	1.5	9
23	Isolation and Selection of Duck Primary Cells as Pathogenic and Innate Immunologic Cell Models for Duck Plague Virus. Frontiers in Immunology, 2020, 10, 3131.	2.2	9
24	Duplicate US1 Genes of Duck Enteritis Virus Encode a Non-essential Immediate Early Protein Localized to the Nucleus. Frontiers in Cellular and Infection Microbiology, 2020, 9, 463.	1.8	9
25	An Exposed Outer Membrane Hemin-Binding Protein Facilitates Hemin Transport by a TonB-Dependent Receptor in Riemerella anatipestifer. Applied and Environmental Microbiology, 2021, 87, e0036721.	1.4	9
26	High incidence of multi-drug resistance and heterogeneity of mobile genetic elements in Escherichia coli isolates from diseased ducks in Sichuan province of China. Ecotoxicology and Environmental Safety, 2021, 222, 112475.	2.9	9
27	Duck enteritis virus UL21 is a late gene encoding a protein that interacts with pUL16. BMC Veterinary Research, 2020, 16, 8.	0.7	8
28	Duck enteritis virus pUL47, as a late structural protein localized in the nucleus, mainly depends on residues 40 to 50 and 768 to 777 and inhibits IFN- 12 signalling by interacting with STAT1. Veterinary Research, 2020, 51, 135.	1.1	8
29	DPV UL41 gene encoding protein induces host shutoff activity and affects viral replication. Veterinary Microbiology, 2021, 255, 108979.	0.8	8
30	N130, N175 and N207 are N-linked glycosylation sites of duck Tembusu virus NS1 that are important for viral multiplication, viremia and virulence in ducklings. Veterinary Microbiology, 2021, 261, 109215.	0.8	8
31	Putative Riemerella anatipestifer Outer Membrane Protein H Affects Virulence. Frontiers in Microbiology, 2021, 12, 708225.	1.5	7
32	Duck Tembusu virus promotes the expression of suppressor of cytokine signaling 1 by downregulating miR-148a-5p to facilitate virus replication. Infection, Genetics and Evolution, 2020, 85, 104392.	1.0	6
33	The lipopolysaccharide outer core transferase genes pcgD and hptE contribute differently to the virulence of Pasteurella multocida in ducks. Veterinary Research, 2021, 52, 37.	1.1	6
34	Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Frontiers in Microbiology, 2021, 12, 668461.	1.5	6
35	A viroporin-like 2B protein of duck hepatitis A virus 1 that induces incomplete autophagy in DEF cells. Poultry Science, 2021, 100, 101331.	1.5	6
36	DHAV-1 Blocks the Signaling Pathway Upstream of Type I Interferon by Inhibiting the Interferon Regulatory Factor 7 Protein. Frontiers in Microbiology, 2021, 12, 700434.	1.5	6

#	Article	IF	Citations
37	Evaluation of the Safety and Immunogenicity of Duck-Plague Virus gE Mutants. Frontiers in Immunology, 2022, 13, 882796.	2.2	6
38	Mutations in VPO and 2C Proteins of Duck Hepatitis A Virus Type 3 Attenuate Viral Infection and Virulence. Vaccines, 2019, 7, 111.	2.1	5
39	Duck Enteritis Virus VP16 Antagonizes IFN- $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Mediated Antiviral Innate Immunity. Journal of Immunology Research, 2020, 2020, 1-13.	0.9	5
40	Duck Hepatitis A Virus Type 1 Induces eIF2α Phosphorylation-Dependent Cellular Translation Shutoff via PERK/GCN2. Frontiers in Microbiology, 2021, 12, 624540.	1.5	5
41	SC75741 antagonizes vesicular stomatitis virus, duck Tembusu virus, and duck plague virus infection in duck cells through promoting innate immune responses. Poultry Science, 2021, 100, 101085.	1.5	5
42	UL11 Protein Is a Key Participant of the Duck Plague Virus in Its Life Cycle. Frontiers in Microbiology, 2021, 12, 792361.	1.5	5
43	Immunogenicity and protection of a Pasteurella multocida strain with a truncated lipopolysaccharide outer core in ducks. Veterinary Research, 2022, 53, 17.	1.1	5
44	Development of a simple and rapid immunochromatographic strip test for detecting duck plague virus antibodies based on gl protein. Journal of Virological Methods, 2020, 277, 113803.	1.0	4
45	Natural Transformation of Riemerella columbina and Its Determinants. Frontiers in Microbiology, 2021, 12, 634895.	1.5	4
46	Effect of Nutritional Determinants and TonB on the Natural Transformation of Riemerella anatipestifer. Frontiers in Microbiology, 2021, 12, 644868.	1.5	4
47	Replication/Assembly Defective Avian Flavivirus With Internal Deletions in the Capsid Can Be Used as an Approach for Living Attenuated Vaccine. Frontiers in Immunology, 2021, 12, 694959.	2.2	4
48	Nuclear localization of duck Tembusu virus NS5 protein attenuates viral replication in vitro and NS5-NS2B3 interaction. Veterinary Microbiology, 2021, 262, 109239.	0.8	4
49	The LORF5 Gene Is Non-essential for Replication but Important for Duck Plague Virus Cell-to-Cell Spread Efficiently in Host Cells. Frontiers in Microbiology, 2021, 12, 744408.	1.5	4
50	Tracing genetic signatures of batâ€toâ€human coronaviruses and early transmission of North American SARSâ€CoVâ€2. Transboundary and Emerging Diseases, 2021, , .	1.3	3
51	Identification of the Natural Transformation Genes in Riemerella anatipestifer by Random Transposon Mutagenesis. Frontiers in Microbiology, 2021, 12, 712198.	1.5	3
52	Comparative genomics and metabolomics analysis of Riemerella anatipestifer strain CH-1 and CH-2. Scientific Reports, 2021, 11, 616.	1.6	3
53	The lysine at position 151 of the duck hepatitis A virus $1\ 2C$ protein is critical for its NTPase activities. Veterinary Microbiology, 2022, 264, 109300.	0.8	3
54	Development and evaluation of an indirect ELISA based on recombinant structural protein VP2 to detect antibodies against duck hepatitis A virus. Journal of Virological Methods, 2020, 282, 113903.	1.0	2

#	Article	IF	Citations
55	Autophagy Is a Potential Therapeutic Target Against Duck Tembusu Virus Infection in vivo. Frontiers in Cellular and Infection Microbiology, 2020, 10, 155.	1.8	2
56	Two nuclear localization signals regulate intracellular localization of the duck enteritis virus UL13 protein. Poultry Science, 2021, 100, 26-38.	1.5	2
57	The Roles of Envelope Glycoprotein M in the Life Cycle of Some Alphaherpesviruses. Frontiers in Microbiology, 2021, 12, 631523.	1.5	2
58	Duck hepatitis A virus 1 has lymphoid tissue tropism altering the organic immune responses of mature ducks. Transboundary and Emerging Diseases, 2021, 68, 3588-3600.	1.3	2
59	ICP22/IE63 Mediated Transcriptional Regulation and Immune Evasion: Two Important Survival Strategies for Alphaherpesviruses. Frontiers in Immunology, 2021, 12, 743466.	2.2	2
60	Duck plague virus UL41 protein inhibits RIG-I/MDA5-mediated duck IFN- \hat{l}^2 production via mRNA degradation activity. Veterinary Research, 2022, 53, 22.	1.1	2
61	Duck Plague Virus pUL48 Protein Activates the Immediate-Early Gene to Initiate the Transcription of the Virus Gene. Frontiers in Microbiology, 2021, 12, 795730.	1.5	2
62	Role of the homologous MTase-RdRp interface of flavivirus intramolecular NS5 on duck tembusu virus. Veterinary Microbiology, 2022, 269, 109433.	0.8	2
63	RNA-Seq analysis of duck embryo fibroblast cells gene expression during duck Tembusu virus infection. Veterinary Research, 2022, 53, 34.	1.1	2
64	Research Note: Duck plague virus glycoprotein I influences cell–cell spread and final envelope acquisition. Poultry Science, 2020, 99, 6647-6652.	1.5	1
65	Substitutions at Loop Regions of TMUV E Protein Domain III Differentially Impair Viral Entry and Assembly. Frontiers in Microbiology, 2021, 12, 688172.	1.5	1
66	Development of an indirect ELISA method based on the VP4 protein for detection antibody against duck hepatitis A virus type 1. Journal of Virological Methods, 2022, 300, 114393.	1.0	1
67	Assembly-defective Tembusu virus ectopically expressing capsid protein is an approach for live-attenuated flavivirus vaccine development. Npj Vaccines, 2022, 7, 51.	2.9	1
68	The autophagyâ€related degradation of MDA5 by Tembusu virus nonstructural 2B disrupts IFNβ production. FASEB Journal, 2022, 36, .	0.2	1
69	Molecular cloning of duck CD40 and its immune function research. Poultry Science, 2021, 100, 101100.	1.5	0
70	The protein encoded by the duck plague virus UL14 gene regulates virion morphogenesis and affects viral replication. Poultry Science, 2022, 101, 101863.	1.5	0
71	The G92 NS2B mutant of Tembusu virus is involved in severe defects in progeny virus assembly. Veterinary Microbiology, 2022, 267, 109396.	0.8	0