
Youhei Takeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1965944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermally activated delayed fluorescent phenothiazine–dibenzo[a,j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chemical Science, 2017, 8, 2677-2686.	3.7	356
2	Dibenzo[<i>a,j</i>]phenazineâ€Cored Donor–Acceptor–Donor Compounds as Greenâ€ŧoâ€Red/NIR Thermall Activated Delayed Fluorescence Organic Light Emitters. Angewandte Chemie - International Edition, 2016, 55, 5739-5744.	y 7.2	303
3	1,4â€Bis(alkenyl)â€2,5â€dipiperidinobenzenes: Minimal Fluorophores Exhibiting Highly Efficient Emission in the Solid State. Angewandte Chemie - International Edition, 2009, 48, 3653-3656.	7.2	254
4	1,4â€Bis(diarylamino)â€2,5â€bis(4â€cyanophenylethenyl)benzenes: Fluorophores Exhibiting Efficient Red and Nearâ€Infrared Emissions in Solid State. Angewandte Chemie - International Edition, 2012, 51, 4095-4099.	7.2	172
5	Generation of Nitrile Oxides from Oximes Using <i>t</i> BuOI and Their Cycloaddition. Organic Letters, 2011, 13, 2966-2969.	2.4	143
6	2-Halogenoimidazolium Salt Catalyzed Aza-Diels–Alder Reaction through Halogen-Bond Formation. Organic Letters, 2015, 17, 318-321.	2.4	143
7	Pd/NHC-Catalyzed Enantiospecific and Regioselective Suzuki–Miyaura Arylation of 2-Arylaziridines: Synthesis of Enantioenriched 2-Arylphenethylamine Derivatives. Journal of the American Chemical Society, 2014, 136, 8544-8547.	6.6	139
8	Recent Advancements in and the Future of Organic Emitters: TADF―and RTPâ€Active Multifunctional Organic Materials. Chemistry - an Asian Journal, 2019, 14, 1613-1636.	1.7	139
9	Cyclizative Atmospheric CO ₂ Fixation by Unsaturated Amines with <i>t</i> -BuOI Leading to Cyclic Carbamates. Organic Letters, 2012, 14, 4874-4877.	2.4	134
10	Thermally Activated Delayed Fluorescent Donor–Acceptor–Donor–Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2020, 142, 1482-1491.	6.6	114
11	Oxidative Dimerization of Aromatic Amines using <i>t</i> BuOI: Entry to Unsymmetric Aromatic Azo Compounds. Angewandte Chemie - International Edition, 2012, 51, 7804-7808.	7.2	106
12	Conformationally-flexible and moderately electron-donating units-installed D–A–D triad enabling multicolor-changing mechanochromic luminescence, TADF and room-temperature phosphorescence. Chemical Communications, 2018, 54, 6847-6850.	2.2	98
13	Oxidative Dimerization of (Hetero)aromatic Amines Utilizing <i>t</i> BuOI Leading to (Hetero)aromatic Azo Compounds: Scope and Mechanistic Studies. Journal of Organic Chemistry, 2013, 78, 12090-12105.	1.7	81
14	An Airâ€Stable Lowâ€Bandgap nâ€Type Organic Polymer Semiconductor Exhibiting Selective Solubility in Perfluorinated Solvents. Angewandte Chemie - International Edition, 2012, 51, 9042-9046.	7.2	74
15	Thermally activated delayed fluorescence <i>vs.</i> room temperature phosphorescence by conformation control of organic single molecules. Journal of Materials Chemistry C, 2019, 7, 6616-6621.	2.7	74
16	Dibenzo[<i>a,j</i>]phenazine ored Donor–Acceptor–Donor Compounds as Greenâ€ŧoâ€Red/NIR Thermall Activated Delayed Fluorescence Organic Light Emitters. Angewandte Chemie, 2016, 128, 5833-5838.	у _{1.6}	70
17	Palladium-catalyzed regioselective and stereo-invertive ring-opening borylation of 2-arylaziridines with bis(pinacolato)diboron: experimental and computational studies. Chemical Science, 2016, 7, 6141-6152.	3.7	69
18	Hypervalent iodine(iii)-induced oxidative [4+2] annulation of o-phenylenediamines and electron-deficient alkynes: direct synthesis of quinoxalines from alkyne substrates under metal-free conditions. Chemical Communications, 2013, 49, 9266.	2.2	68

#	Article	IF	CITATIONS
19	Twisting strategy applied to N,N-diorganoquinacridones leads to organic chromophores exhibiting efficient solid-state fluorescence. Tetrahedron Letters, 2011, 52, 4084-4089.	0.7	58
20	2,6â€Diphosphaâ€ <i>s</i> â€indaceneâ€1,3,5,7(2 <i>H</i> ,6 <i>H</i>)â€tetraone: A Phosphorus Ana Diimides with the Minimal Core Exhibiting High Electronâ€Accepting Ability. Chemistry - A European Journal, 2014, 20, 10266-10270.	ogue of Ar 1.7	romatic 48
21	Palladium-Catalyzed Regioselective and Stereospecific Ring-Opening Cross-Coupling of Aziridines: Experimental and Computational Studies. Accounts of Chemical Research, 2020, 53, 1686-1702.	7.6	48
22	Heavy-Atom-Free Room-Temperature Phosphorescent Organic Light-Emitting Diodes Enabled by Excited States Engineering. ACS Applied Materials & Interfaces, 2021, 13, 2899-2907.	4.0	48
23	Oxidative skeletal rearrangement of 1,1′-binaphthalene-2,2′-diamines (BINAMs) <i>via</i> C–C bond cleavage and nitrogen migration: a versatile synthesis of U-shaped azaacenes. Chemical Communications, 2014, 50, 10291-10294.	2.2	47
24	Straightforward Synthesis of CF ₃ â€Substituted Triarylethenes by Stereoselective Threefold Cross oupling Reactions. Angewandte Chemie - International Edition, 2007, 46, 8659-8661.	7.2	40
25	An optical and electrical study of full thermally activated delayed fluorescent white organic light-emitting diodes. Scientific Reports, 2017, 7, 6234.	1.6	38
26	Alchemy of donor–acceptor–donor multi-photofunctional organic materials: from construction of electron-deficient azaaromatics to exploration of functions. Chemical Communications, 2020, 56, 8884-8894.	2.2	35
27	Diastereoselective Aziridination of Chiral Electron-Deficient Olefins with <i>N</i> -Chloro- <i>N</i> -sodiocarbamates Catalyzed by Chiral Quaternary Ammonium Salts. Journal of Organic Chemistry, 2011, 76, 6277-6285.	1.7	34
28	Selective Functionalization of Fullerenes with <i>N</i> , <i>N</i> â€Dihalosulfonamides as an N ₁ Unit: Versatile Syntheses of Aza[60]fulleroids and Aziridino[60]fullerenes and their Application to Photovoltaic Cells. Chemistry - A European Journal, 2012, 18, 12035-12045.	1.7	30
29	Straightforward and Versatile Synthesis of Fullerooxazoles from C ₆₀ and Carboxamides through Radical Reactions under Mild Conditions. Asian Journal of Organic Chemistry, 2013, 2, 91-97.	1.3	29
30	Revealing the internal heavy chalcogen atom effect on the photophysics of the dibenzo[<i>a,j</i>]phenazine-cored donor–acceptor–donor triad. Journal of Materials Chemistry C, 2021, 9, 13942-13953.	2.7	29
31	Hydrostatic Pressureâ€Controlled Ratiometric Luminescence Responses of a Dibenzo[<i>a,j</i>]phenazineâ€Cored Mechanoluminophore. ChemPhotoChem, 2019, 3, 1203-1211.	1.5	27
32	FRET-mediated near infrared whispering gallery modes: studies on the relevance of intracavity energy transfer with <i>Q</i> -factors. Materials Chemistry Frontiers, 2018, 2, 270-274.	3.2	26
33	Synthesis and Photophysical Properties of Dimethoxybis(3,3,3â€ŧrifluoropropenâ€1â€yl)benzenes: Compact Chromophores Exhibiting Violet Fluorescence in the Solid State. Chemistry - an Asian Journal, 2011, 6, 2536-2544.	1.7	25
34	PCy ₃ atalyzed Ring Expansion of Aziridinofullerenes with CO ₂ and Aryl Isocyanates: Evidence for a Two Consecutive Nucleophilic Substitution Pathway on the Fullerene Cage. Chemistry - A European Journal, 2013, 19, 13479-13483.	1.7	25
35	Transition-metal-free Benzylic C–H Bond Intermolecular Amination Utilizing Chloramine-T and I2. Chemistry Letters, 2012, 41, 1672-1674.	0.7	24
36	Ni(II) 10-Phosphacorrole: A Porphyrin Analogue Containing Phosphorus at the <i>Meso</i> Position. Journal of the American Chemical Society, 2019, 141, 4800-4805.	6.6	24

#	Article	IF	CITATIONS
37	Novel Generation of 3,3,3-Trifluoropropynyllithium and Transformation of the Carbonyl Adducts to Trifluoromethyl-Substituted Allenes. Synlett, 2007, 2007, 1163-1165.	1.0	19
38	Catalyst-controlled regiodivergent ring-opening C(sp ³)–Si bond-forming reactions of 2-arylaziridines with silylborane enabled by synergistic palladium/copper dual catalysis. Chemical Science, 2019, 10, 8642-8647.	3.7	19
39	New preparation and synthetic reactions of 3,3,3-trifluoropropynyllithium, -borate and -stannane: facile synthesis of trifluoromethylated allenes, arylacetylenes and enynes. Future Medicinal Chemistry, 2009, 1, 921-945.	1.1	18
40	The regioisomeric effect on the excited-state fate leading to room-temperature phosphorescence or thermally activated delayed fluorescence in a dibenzophenazine-cored donor–acceptor–donor system. Journal of Materials Chemistry C, 2022, 10, 4905-4913.	2.7	18
41	A facile synthesis of functionalized 7,8-diaza[5]helicenes through an oxidative ring-closure of 1,1'-binaphthalene-2,2'-diamines (BINAMs). Beilstein Journal of Organic Chemistry, 2015, 11, 9-15.	1.3	17
42	Molecular Packing and Solidâ€State Photophysical Properties of 1,3,6,8â€Tetraalkylpyrenes. Chemistry - A European Journal, 2019, 25, 14817-14825.	1.7	17
43	Thieno[3,4â€ <i>c</i>]phospholeâ€4,6â€dione: A Versatile Building Block for Phosphorusâ€Containing Functional Ï€â€Conjugated Systems. Chemistry - A European Journal, 2016, 22, 10360-10364.	1.7	16
44	Perfluorocycloparaphenylenes. Nature Communications, 2022, 13, .	5.8	16
45	Facile Synthesis of Trifluoromethyl-substituted Enynes: Remarkable Reactivity and Stereoselectivity of Tributyl(3,3,3-trifluoropropynyl)stannane in Carbostannylation of Alkynes. Chemistry Letters, 2005, 34, 1700-1701.	0.7	15
46	A Practical Synthesis of Azobenzenes through Oxidative Dimerization of Aromatic Amines Using tert-Butyl Hypoiodite. Synthesis, 2013, 45, 1029-1033.	1.2	15
47	Revisiting Phosphorus Analogues of Phthalimides and Naphthalimides: Syntheses and Comparative Studies. Chemistry - A European Journal, 2015, 21, 1666-1672.	1.7	15
48	Asymmetric Synthesis of β 2 â€Aryl Amino Acids through Pdâ€Catalyzed Enantiospecific and Regioselective Ringâ€Opening Suzuki–Miyaura Arylation of Aziridineâ€2â€carboxylates. Chemistry - A European Journal, 2019, 25, 10226-10231.	1.7	14
49	Sigmoidally hydrochromic molecular porous crystal with rotatable dendrons. Communications Chemistry, 2020, 3, .	2.0	14
50	Stereoselective Preparation and Cope Rearrangement of 2-CF3-cis-2,3-bis(alkenyl)oxiranes: A Facile Route to 2-CF3-Substituted Oxacycles. Heterocycles, 2008, 76, 329.	0.4	13
51	Preparation, Structure, and Diels–Alder Reaction of Phenyl(trifluoromethanesulfonate)(3,3,3-trifluoropropynyl)-λ3-iodane. Chemistry Letters, 2008, 37, 1304-1305.	0.7	13
52	Nucleophilic Ringâ€Opening of <i>N</i> â€ <i>oâ€</i> Nosylaziridines with <i>Nâ€</i> Chloroâ€ <i>N</i> â€Sodiocarbamate: Facile Preparation of Differentially Protected Vicinal Diamines. Asian Journal of Organic Chemistry, 2012, 1, 226-230.	1.3	12
53	Computational Study on the Mechanism and Origin of the Regioselectivity and Stereospecificity in Pd/SIPr-Catalyzed Ring-Opening Cross-Coupling of 2-Arylaziridines with Arylboronic Acids. ACS Catalysis, 2019, 9, 4582-4592.	5.5	12
54	Dual-photofunctional organogermanium compound based on donor–acceptor–donor architecture. Chemical Communications, 2022, 58, 5889-5892.	2.2	11

#	Article	IF	CITATIONS
55	Aromatic-fused diketophosphanyl-core organic functional materials: phosphorus mimics of imides or beyond?. Organic and Biomolecular Chemistry, 2019, 17, 7807-7821.	1.5	10
56	Syntheses of Diverse Donor-Substituted Bisbenzofuro[2,3- <i>b</i> :3′,2′- <i>e</i>]pyridines (BBZFPys) via Pd Catalysis, and Their Photophysical Properties. Journal of Organic Chemistry, 2018, 83, 10289-10302.	1.7	9
57	Electrochemical and Spectroelectrochemical Comparative Study of Macrocyclic Thermally Activated Delayed Fluorescent Compounds: Molecular Charge Stability vs OLED EQE Rollâ€Off. Asian Journal of Organic Chemistry, 2020, 9, 2153-2161.	1.3	8
58	A New Entry to Purely Organic Thermally Activated Delayed Fluorescence Emitters Based on Pyrido[2,3â€ <i>b</i>]pyrazineâ€Dihydrophenazasilines Donorâ€Acceptor Dyad. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	7
59	The impact of replacement of nitrogen with phosphorus atom in the pyromellitic diimides on their photophysical and electrochemical properties. Electrochimica Acta, 2019, 295, 801-809.	2.6	6
60	Effect of Alkyl Groups in Pyrene Chromophore on the Mechanical Response of Pyreneâ€Octafluoronaphthalene Co rystals. Chemistry - an Asian Journal, 2020, 15, 1349-1354.	1.7	6
61	Palladiumâ€Catalyzed Regioselective and Stereospecific Ringâ€Opening Suzukiâ€Miyaura Arylative Crossâ€Coupling of 2â€Arylazetidines with Arylboronic Acids. Advanced Synthesis and Catalysis, 2021, 363, 2796-2805.	2.1	6
62	Near Fermi Superatom State Stabilized by Surface State Resonances in a Multiporous Molecular Network. Nano Letters, 2021, 21, 6456-6462.	4.5	6
63	Mechanistic Study of the Palladium-Catalyzed Stereoselective Cross-Coupling Reaction of 1,1-Dibromo-3,3,3-trifluoro-2-tosyloxypropene. Bulletin of the Chemical Society of Japan, 2011, 84, 1339-1341.	2.0	5
64	Syntheses and Room Temperature Phosphorescence Properties of Dibenzobenzodithiophenes and Dibenzothiophenes. Bulletin of the Chemical Society of Japan, 2021, 94, 2498-2504.	2.0	5
65	The Impact of C 2 Insertion into a Carbazole Donor on the Physicochemical Properties of Dibenzo[a,j]phenazineâ€Cored Donor–Acceptor–Donor Triads. Chemistry - A European Journal, 2021, 27, 13390-13398.	1.7	5
66	An Inclusion Complex of C ₆₀ with Organosilylated γ yclodextrin: Drastic Enhancement of Apparent Solubility of C ₆₀ in Nonpolar and Weakly Polar Organic Solvents. Asian Journal of Organic Chemistry, 2013, 2, 69-73.	1.3	3
67	Revealing Topological Influence of Phenylenediamine Unit on Physicochemical Properties of Donorâ€Acceptorâ€Donorâ€Acceptor Thermally Activated Delayed Fluorescent Macrocycles. Chemistry - an Asian Journal, 2020, 15, 4098-4103.	1.7	3
68	The Photophysics of Dibenzo[<i>a,j</i>]phenazine. ChemPhotoChem, 2021, 5, 335-347.	1.5	3
69	Peripherally Donor-Installed 7,8-Diaza[5]helicenes as a Platform for Helical Luminophores. Synthesis, 2021, 53, 1584-1596.	1.2	3
70	Ring-contractive and -Closing Skeletal Rearrangement of 1,1'-Binaphthalene-2,2'-Diamines (Binams) Induced by an Iodine-Containing Oxidant: Synthesis of Spiro[Benzo[e]Indole-1,1'-inden]-2-amines and Application to an Aiee-active BF2 Complex. Heterocycles, 2016, 93, 770.	0.4	2
71	Comparative study of thermally activated delayed fluorescent properties of donor–acceptor and donor–acceptor–donor architectures based on phenoxazine and dibenzo[<i>a,j</i>]phenazine. Beilstein Journal of Organic Chemistry, 2022, 18, 459-468.	1.3	2
72	Heterocyclic Reagents Containing Nitrogen–Halogen Bond: Recent Applications. Topics in Heterocyclic Chemistry, 2011, , 139-183.	0.2	1

#	Article	IF	CITATIONS
73	Oxidative Self-Annulation of 2,5-Diaryl-3,4-diaminothiophene via C–C and C–S Bond Cleavage of the Thiophene Ring: A New Synthesis of an Amino-Substituted Triarylthieno[3,4-b]pyrazines and Their Photophysical Properties. Heterocycles, 2017, 95, 137.	0.4	1
74	Transition metal catalyzed cross-coupling and nitrogen reduction reactions: Lessons from computational studies. Advances in Organometallic Chemistry, 2022, , 35-78.	0.5	1
75	Design and synthesis of highly emissive solid fluorophores. , 2009, , .		Ο
76	PROFILE: Early Excellence in <i>Physical Organic Chemistry</i> . Journal of Physical Organic Chemistry, 2016, 29, 116-117.	0.9	0
77	The Photophysics of Dibenzo[a,j]phenazine. ChemPhotoChem, 2021, 5, 297-297.	1.5	Ο
78	Creation of Novel Functional Aza-Containing π-Conjugated Molecules Based on the Development of Novel Oxidative Transformations of Aromatic Amines. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 955-964.	0.0	0
79	Development of Aromatic-Fused Diketophosphanyl-Cored Functional π-Conjugated Molecules. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 792-800.	0.0	0