
Masafumi Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1965813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Diagnosis of Thiophanate-Methyl-Resistant Strains of <i>Fusarium fujikuroi</i> in Japan. Plant Disease, 2022, 106, 634-640.	1.4	5
2	Genome analysis provides insights into the biocontrol ability of Mitsuaria sp. strain TWR114. Archives of Microbiology, 2021, 203, 3373-3388.	2.2	3
3	Suppression of Pseudomonas syringae pv. tomato infection by rhizosphere fungi. Pest Management Science, 2021, 77, 4350-4356.	3.4	6
4	Systemic resistance induced by Phoma sp. GS8-3 and nanosilica against Cucumber mosaic virus. Environmental Science and Pollution Research, 2020, 27, 19029-19037.	5.3	17
5	A single gene transfer of gibberellin biosynthesis gene cluster increases gibberellin production in a Fusarium fujikuroi strain with gibberellin low producibility. Plant Pathology, 2020, 69, 901-910.	2.4	7
6	A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiological Research, 2020, 234, 126428.	5.3	33
7	Biocontrol of Tomato Bacterial Wilt by Foliar Spray Application of a Novel Strain of Endophytic <i>Bacillus</i> sp Microbes and Environments, 2020, 35, n/a.	1.6	16
8	Improving performance of microbial biocontrol agents against plant diseases. Journal of General Plant Pathology, 2019, 85, 329-336.	1.0	36
9	A Natural Variation of Fumonisin Gene Cluster Associated with Fumonisin Production Difference in Fusarium fujikuroi. Toxins, 2019, 11, 200.	3.4	16
10	Microbial basis of Fusarium wilt suppression by Allium cultivation. Scientific Reports, 2019, 9, 1715.	3.3	33
11	Enhanced biocontrol of tomato bacterial wilt using the combined application of Mitsuaria sp. TWR114 and nonpathogenic Ralstonia sp. TCR112. Journal of General Plant Pathology, 2019, 85, 142-154.	1.0	15
12	Genetic Differentiation Associated with Fumonisin and Gibberellin Production in Japanese <i>Fusarium fujikuroi</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	27
13	Biocontrol potential of Ralstonia sp. TCR112 and Mitsuaria sp. TWR114 against tomato bacterial wilt. Applied Soil Ecology, 2018, 128, 71-80.	4.3	18
14	Two new 2-alkylquinolones, inhibitory to the fish skin ulcer pathogen Tenacibaculum maritimum, produced by a rhizobacterium of the genus Burkholderia sp Beilstein Journal of Organic Chemistry, 2018, 14, 1446-1451.	2.2	19
15	Biocontrol Potential of an Endophytic <i>Streptomyces</i> sp. Strain MBCN152-1 against <i>Alternaria brassicicola</i> on Cabbage Plug Seedlings. Microbes and Environments, 2017, 32, 133-141.	1.6	20
16	A Natural Mutation Involving both Pathogenicity and Perithecium Formation in the <i>Fusarium graminearum</i> Species Complex. G3: Genes, Genomes, Genetics, 2016, 6, 3883-3892.	1.8	10
17	Development of Culture Medium for the Isolation of <i>Flavobacterium</i> and <i>Chryseobacterium</i> from Rhizosphere Soil. Microbes and Environments, 2016, 31, 104-110.	1.6	48
18	Induction of systemic resistance against Fusarium crown and root rot disease by blast processing. Journal of Plant Interactions, 2015, 10, 262-269.	2.1	3

#	Article	IF	CITATIONS
19	Suppression of rice blast, cabbage black leaf spot, and tomato bacterial wilt diseases byMeyerozyma guilliermondiiTA-2 and the nature of protection. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 629-636.	0.6	3
20	Control of tomato bacterial wilt and root-knot diseases by <i>Bacillus thuringiensis</i> CR-371 and <i>Streptomyces avermectinius</i> NBRC14893. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 575-580.	0.6	5
21	Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (<i>Hibiscus sabdariffa</i> L.) in Upper Egypt. Mycobiology, 2014, 42, 66-72.	1.7	19
22	Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungi in Arabidopsis thaliana. PLoS ONE, 2014, 9, e86882.	2.5	163
23	Control of Root Rot and Wilt Diseases of Roselle under Field Conditions. Mycobiology, 2014, 42, 376-384.	1.7	14
24	A single nucleotide polymorphism in the translation elongation factor 1α gene correlates with the ability to produce fumonisin in Japanese Fusarium fujikuroi. Fungal Biology, 2014, 118, 402-412.	2.5	26
25	Recent studies on biological control of plant diseases in Japan. Journal of General Plant Pathology, 2014, 80, 287-302.	1.0	18
26	Induction of Systemic Resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathology Journal, 2013, 29, 193-200.	1.7	26
27	Induction of Systemic Resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathology Journal, 2013, 29, 193-200.	1.7	79
28	The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant and Soil, 2012, 361, 397-409.	3.7	79
29	A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. Journal of General Plant Pathology, 2009, 75, 27-36.	1.0	83
30	Damping-off of cabbage plug seedlings caused by Pythium ultimum var. ultimum in Japan. Journal of General Plant Pathology, 2006, 72, 123-125.	1.0	8
31	Disease resistance induced by nonantagonistic endophytic Streptomyces spp. on tissue-cultured seedlings of rhododendron. Journal of General Plant Pathology, 2006, 72, 351-354.	1.0	14
32	Visualization of Infection of an Endophytic Actinomycete Streptomyces galbus in Leaves of Tissue-cultured Rhododendron. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2005, 19, 7-12.	0.3	29
33	Studies on Endophytic Actinomycetes (I) Streptomyces sp. Isolated from Rhododendron and Its Antifungal Activity. Journal of General Plant Pathology, 2000, 66, 360-366.	1.0	121