Suresh Gadde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1965416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The entry of nanoparticles into solid tumours. Nature Materials, 2020, 19, 566-575.	13.3	1,036
2	Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nature Communications, 2015, 6, 8692.	5.8	353
3	Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Science Translational Medicine, 2015, 7, 314ra183.	5.8	273
4	Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6506-6511.	3.3	184
5	Control of H- and J-Aggregate Formation via Hostâ~'Guest Complexation using Cucurbituril Hosts. Journal of the American Chemical Society, 2008, 130, 17114-17119.	6.6	183
6	Targeted Interleukin-10 Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis. ACS Nano, 2016, 10, 5280-5292.	7.3	170
7	Studies on Covalently Linked Porphyrinâ^'C60Dyads:Â Stabilization of Charge-Separated States by Axial Coordination. Journal of Physical Chemistry A, 2002, 106, 12393-12404.	1.1	114
8	Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2019, 13, 6491-6505.	7.3	98
9	Ternary Complexes Comprising Cucurbit[10]uril, Porphyrins, and Guests. Angewandte Chemie - International Edition, 2008, 47, 2657-2660.	7.2	97
10	Supramolecular Triads Formed by Axial Coordination of Fullerene to Covalently Linked Zinc Porphyrinâ^Ferrocene(s):  Design, Syntheses, Electrochemistry, and Photochemistry. Journal of Physical Chemistry B, 2004, 108, 11333-11343.	1.2	88
11	Supramolecular porphyrin–fullerene via â€~two-point' binding strategy: Axial-coordination and cation–crown ether complexation. Chemical Communications, 2005, , 1279-1281.	2.2	87
12	Multi-drug delivery nanocarriers for combination therapy. MedChemComm, 2015, 6, 1916-1929.	3.5	85
13	Effect of Axial Ligation or π-π-Type Interactions on Photochemical Charge Stabilization in "Two-Point― Bound Supramolecular Porphyrin-Fullerene Conjugates. Chemistry - A European Journal, 2005, 11, 4416-4428.	1.7	84
14	Multi-Triphenylamine-Substituted Porphyrin-Fullerene Conjugates as Charge Stabilizing "Antennaâ^'Reaction Center―Mimics. Journal of Physical Chemistry A, 2007, 111, 8552-8560.	1.1	81
15	An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells. Cell Death and Disease, 2017, 8, e2932-e2932.	2.7	76
16	Photosynthetic Reaction Center Mimicry of a "Special Pair―Dimer Linked to Electron Acceptors by a Supramolecular Approach: Self-Assembled Cofacial Zinc Porphyrin Dimer Complexed with Fullerene(s). Chemistry - A European Journal, 2007, 13, 916-922.	1.7	75
17	Controlling the Formation of Cyanine Dye H―and Jâ€Aggregates with Cucurbituril Hosts in the Presence of Anionic Polyelectrolytes. Chemistry - A European Journal, 2009, 15, 6025-6031.	1.7	73
18	Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor. Chemical Communications, 2011, 47, 7980.	2.2	73

SURESH GADDE

#	Article	IF	CITATIONS
19	Design and Studies on Supramolecular Ferroceneâ^'Porphyrinâ^'Fullerene Constructs for Generating Long-Lived Charge Separated States. Journal of Physical Chemistry B, 2006, 110, 25240-25250.	1.2	72
20	Self-Assembled via Axial Coordination Magnesium Porphyrinâ^'Imidazole Appended Fullerene Dyad:Â Spectroscopic, Electrochemical, Computational, and Photochemical Studies. Journal of Physical Chemistry B, 2005, 109, 10107-10114.	1.2	71
21	Nanoparticles Containing a Liver X Receptor Agonist Inhibit Inflammation and Atherosclerosis. Advanced Healthcare Materials, 2015, 4, 228-236.	3.9	66
22	Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine, 2013, 8, 687-698.	1.7	65
23	Supramolecular complex composed of a covalently linked zinc porphyrin dimer and fulleropyrrolidine bearing two axially coordinating pyridine entities. Chemical Communications, 2004, , 2276.	2.2	64
24	Cucurbituril Complexes of Redox Active Guests. Current Organic Chemistry, 2011, 15, 27-38.	0.9	58
25	High Resolution Characterization of Engineered Nanomaterial Dispersions in Complex Media Using Tunable Resistive Pulse Sensing Technology. ACS Nano, 2014, 8, 9003-9015.	7.3	55
26	Dual inhibition of Wnt and Yesâ€associated protein signaling retards the growth of tripleâ€negative breast cancer in both mesenchymal and epithelial states. Molecular Oncology, 2018, 12, 423-440.	2.1	54
27	Spectral, electrochemical, and photophysical studies of a magnesium porphyrin–fullerene dyad. Physical Chemistry Chemical Physics, 2005, 7, 3163.	1.3	51
28	Nanoparticles for Targeted and Temporally Controlled Drug Delivery. Nanostructure Science and Technology, 2012, , 9-29.	0.1	51
29	Electrochemistry of the Inclusion Complexes Formed Between the Cucurbit[7]uril Host and Several Cationic and Neutral Ferrocene Derivativesâ€Part of the "Langmuir 25th Year: Molecular and macromolecular self-assemblies―special issue Langmuir, 2009, 25, 13763-13769.	1.6	50
30	Design, Syntheses, and Studies of Supramolecular Porphyrinâ^Fullerene Conjugates, Using Bis-18-crown-6 Appended Porphyrins and Pyridine or Alkyl Ammonium Functionalized Fullerenes. Journal of Physical Chemistry B, 2006, 110, 5905-5913.	1.2	46
31	Langmuirâ^'Blodgett Films of a Cationic Zinc Porphyrinâ^'Imidazole-Functionalized Fullerene Dyad:Â Formation and Photoelectrochemical Studies. Langmuir, 2007, 23, 1917-1923.	1.6	45
32	Potassium Ion Controlled Switching of Intra- to Intermolecular Electron Transfer in Crown Ether Appended Free-Base Porphyrinâ^'Fullerene Donorâ^'Acceptor Systems. Journal of Physical Chemistry A, 2006, 110, 4338-4347.	1.1	44
33	Multiple photosynthetic reaction centres using zinc porphyrinic oligopeptide–fulleropyrrolidine supramolecular complexes. Physical Chemistry Chemical Physics, 2011, 13, 17019.	1.3	40
34	Light-Induced Electron Transfer of a Supramolecular Bis(Zinc Porphyrin)â^'Fullerene Triad Constructed via a Diacetylamidopyridine/Uracil Hydrogen-Bonding Motif. Journal of Physical Chemistry C, 2007, 111, 12500-12503.	1.5	39
35	Supramolecular triads bearing porphyrin and fullerene via â€~two-point' binding involving coordination and hydrogen bonding. Tetrahedron, 2006, 62, 1967-1978.	1.0	38
36	Self-assembled supramolecular triad composed of fulleropyrrolidine bearing two pyridine moieties axially coordinated to two zinc porphyrins. Journal of Porphyrins and Phthalocyanines, 2003, 07, 1-7.	0.4	37

SURESH GADDE

#	Article	IF	CITATIONS
37	Mediated Electrochemical Oxidation of a Fully Encapsulated Redox Active Center. Journal of the American Chemical Society, 2009, 131, 12876-12877.	6.6	36
38	Electrochemistry of Redox Active Centres Encapsulated by Non-Covalent Methods. Australian Journal of Chemistry, 2010, 63, 184.	0.5	35
39	Co-inhibition of mTORC1, HDAC and ESR1 $\hat{1}$ ± retards the growth of triple-negative breast cancer and suppresses cancer stem cells. Cell Death and Disease, 2018, 9, 815.	2.7	34
40	Nanomedicine Meets microRNA. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, e73-9.	1.1	33
41	Liposome Imaging in Optically Cleared Tissues. Nano Letters, 2020, 20, 1362-1369.	4.5	28
42	Redox Active Two-Component Films of Palladium and Covalently Linked Zinc Porphyrin–Fullerene Dyad. Electroanalysis, 2006, 18, 841-848.	1.5	27
43	Development of Therapeutic Polymeric Nanoparticles for the Resolution of Inflammation. Advanced Healthcare Materials, 2014, 3, 1448-1456.	3.9	26
44	Electron transfer switching in supramolecular porphyrin–fullerene conjugates held by alkylammonium cation-crown ether binding. Chemical Communications, 2006, , 4327-4329.	2.2	25
45	Self-Assembled Supramolecular Ferroceneâ^'Fullerene Dyads and Triad:  Formation and Photoinduced Electron Transfer. Journal of Physical Chemistry C, 2008, 112, 2222-2229.	1.5	25
46	A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature. Cell Death and Disease, 2021, 12, 8.	2.7	25
47	Photophysical studies of supramolecular triads involving zinc naphthalocyanines and pyridylfullerenes with a second electron donor. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1156-1164.	0.4	24
48	Photoinduced electron transfer in a Watson–Crick base-paired, 2-aminopurineâ^¶uracil-C60hydrogen bonding conjugate. Chemical Communications, 2007, , 480-482.	2.2	21
49	Supramolecular Triads of Free-Base Porphyrin, Fullerene, and Ferric Porphyrins via the "Covalent-Coordinate―Binding Approach:  Formation, Sequential Electron Transfer, and Charge Stabilization. Journal of Physical Chemistry C, 2007, 111, 11123-11130.	1.5	20
50	A supramolecular Star Wars Tie Fighter Ship: electron transfer in a self-assembled triad composed of two zinc naphthalocyanines and a fullerene. Journal of Porphyrins and Phthalocyanines, 2005, 09, 698-705.	0.4	17
51	Co-targeting Bulk Tumor and CSCs in Clinically Translatable TNBC Patient-Derived Xenografts via Combination Nanotherapy. Molecular Cancer Therapeutics, 2019, 18, 1755-1764.	1.9	17
52	X-ray structural and DFT computational studies of a self-assembled via axial coordination magnesium porphyrin-fullerene conjugate. Journal of Porphyrins and Phthalocyanines, 2005, 09, 691-697.	0.4	11
53	Host–guest control on the formation of pinacyanol chloride H-aggregates in anionic polyelectrolyte solutions. Supramolecular Chemistry, 2010, 22, 40-45.	1.5	11
54	Dimerization of aromatic ureido pyrimidinedione derivatives: observation of an unexpected tautomer in the solid state. Chemical Communications, 2008, , 1446.	2.2	9

SURESH GADDE

#	Article	IF	CITATIONS
55	Two-component polymer films of palladium and fullerene with covalently linked crown ether voids: effect of cation binding on the redox behavior. Journal of Solid State Electrochemistry, 2012, 16, 65-74.	1.2	7
56	Characterization of Redox-Responsive LXR-Activating Nanoparticle Formulations in Primary Mouse Macrophages. Molecules, 2019, 24, 3751.	1.7	7
57	Foam Cell Induction Activates AMPK But Uncouples Its Regulation of Autophagy and Lysosomal Homeostasis. International Journal of Molecular Sciences, 2020, 21, 9033.	1.8	7
58	Self Assembling of Porphyrin-Fullerene Dyads in the Langmuir and Langmuir-Blodgett Films: Formation as well as Spectral, Electrochemical and Vectorial Electron Transfer Studies. Journal of Nanoscience and Nanotechnology, 2007, 7, 1455-1471.	0.9	5
59	Review—Two Different Multiple Photosynthetic Reaction Centers Using Either Zinc Porphyrinic Oligopeptide-Fulleropyrrolidine or Free-Base Porphyrinic Polypeptide-Li+@C60 Supramolecular Complexes. ECS Journal of Solid State Science and Technology, 2020, 9, 061026.	0.9	2
60	Self-assembling of C60-imidazole and C60-pyridine adducts in the Langmuir and Langmuir-Blodgett films via complex formation with water-soluble zinc porphyrins. AIP Conference Proceedings, 2003, , .	0.3	1
61	Nanoparticles Loaded with Wnt and YAP/Mevalonate Inhibitors in Combination with Paclitaxel Stop the Growth of TNBC Patientâ€Derived Xenografts and Diminish Tumorigenesis. Advanced Therapeutics, 2020. 3. 2000123.	1.6	1