Ivan A Zaporozhchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1964872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients. PLoS ONE, 2016, 11, e0157566.	1.1	127
2	Cell-free and cell-bound circulating nucleic acid complexes: mechanisms of generation, concentration and content. Expert Opinion on Biological Therapy, 2012, 12, S141-S153.	1.4	82
3	Protocol for miRNA isolation from biofluids. Analytical Biochemistry, 2016, 499, 78-84.	1.1	43
4	Profiling of 179 miRNA Expression in Blood Plasma of Lung Cancer Patients and Cancer-Free Individuals. Scientific Reports, 2018, 8, 6348.	1.6	35
5	Plasma miR-19b and miR-183 as Potential Biomarkers of Lung Cancer. PLoS ONE, 2016, 11, e0165261.	1.1	34
6	Searching for the Novel Specific Predictors of Prostate Cancer in Urine: The Analysis of 84 miRNA Expression. International Journal of Molecular Sciences, 2018, 19, 4088.	1.8	32
7	Electrospun Produced 3D Matrices for Covering of Vascular Stents: Paclitaxel Release Depending on Fiber Structure and Composition of the External Environment. Materials, 2018, 11, 2176.	1.3	27
8	The Panel of 12 Cell-Free MicroRNAs as Potential Biomarkers in Prostate Neoplasms. Diagnostics, 2020, 10, 38.	1.3	23
9	Dynamic changes in circulating miRNA levels in response to antitumor therapy of lung cancer. Experimental Lung Research, 2016, 42, 95-102.	0.5	21
10	Isolation of Cell-Free miRNA from Biological Fluids: Influencing Factors and Methods. Diagnostics, 2021, 11, 865.	1.3	21
11	A phenol-free method for isolation of microRNA from biological fluids. Analytical Biochemistry, 2015, 479, 43-47.	1.1	18
12	Data analysis algorithm for the development of extracellular miRNA-based diagnostic systems for prostate cancer. PLoS ONE, 2019, 14, e0215003.	1.1	13
13	Circulating microRNAs in lung cancer: Prospects for diagnosis, prognosis, and prediction of antitumor treatment efficacy. Molecular Biology, 2015, 49, 48-57.	0.4	9
14	The Fundamentals of miRNA Biology: Structure, Biogenesis, and Regulatory Functions. Russian Journal of Bioorganic Chemistry, 2020, 46, 1-13.	0.3	9
15	Ku protein as the main cellular target of cell-surface-bound circulating DNA. Expert Opinion on Biological Therapy, 2012, 12, S35-S41.	1.4	2
16	Representation Analysis of miRNA in Urine Microvesicles and Cell-Free Urine in Prostate Diseases. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2018, 12, 156-163.	0.2	2
17	Sequence-specific transport of oligonucleotides into human endothelial cells. Russian Chemical Bulletin, 2015, 64, 1464-1469.	0.4	0
18	Human cultured cells are capable to incorporate isolated plant mitochondria loaded with exogenous DNA. Biopolymers and Cell, 2012, 28, 310-313.	0.1	0