
Albert QueraltÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1964762/publications.pdf Version: 2024-02-01

AIREDT OUEDALTÃ3

#	Article	IF	CITATIONS
1	Electrospun BiFeO ₃ Nanofibers for Vibrational Energy Harvesting Application. Advanced Engineering Materials, 2022, 24, .	3.5	11
2	Defining inkjet printing conditions of superconducting cuprate films through machine learning. Journal of Materials Chemistry C, 2022, 10, 6885-6895.	5.5	3
3	High critical current solution derived YBa ₂ Cu ₃ O ₇ films grown on sapphire. Superconductor Science and Technology, 2022, 35, 054007.	3.5	3
4	Combinatorial Screening of Cuprate Superconductors by Drop-On-Demand Inkjet Printing. ACS Applied Materials & Interfaces, 2021, 13, 9101-9112.	8.0	13
5	Intrinsic piezoelectric characterization of BiFeO3 nanofibers and its implications for energy harvesting. Applied Surface Science, 2020, 509, 144760.	6.1	26
6	Electrospun SrNb2O6 photoanodes from single-source precursors for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2020, 210, 110485.	6.2	15
7	Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation. Crystals, 2020, 10, 271.	2.2	3
8	LaFeO ₃ Nanofibers for High Detection of Sulfur-Containing Gases. ACS Sustainable Chemistry and Engineering, 2019, 7, 6023-6032.	6.7	46
9	Reduced graphene oxide/iron oxide nanohybrid flexible electrodes grown by laser-based technique for energy storage applications. Ceramics International, 2018, 44, 20409-20416.	4.8	19
10	Photoelectrochemical response of Fe2O3 films reinforced with BiFeO3 nanofibers. MRS Communications, 2018, 8, 1211-1215.	1.8	4
11	Inorganic Nanofibers by Electrospinning Techniques and Their Application in Energy Conversion and Storage Systems. Semiconductors and Semimetals, 2018, 98, 1-70.	0.7	15
12	Unveiling the Nucleation and Coarsening Mechanisms of Solution-Derived Self-Assembled Epitaxial Ce _{0.9} Gd _{0.1} O _{2–<i>y</i>} Nanostructures. Crystal Growth and Design, 2017, 17, 504-516.	3.0	17
13	MAPLE synthesis of reduced graphene oxide/silver nanocomposite electrodes: Influence of target composition and gas ambience. Journal of Alloys and Compounds, 2017, 726, 1003-1013.	5.5	14
14	Orientation symmetry breaking in self-assembled Ce _{1â''x} Gd _x O _{2â^'y} nanowires derived from chemical solutions. RSC Advances, 2016, 6, 97226-97236.	3.6	8
15	Ultrafast Epitaxial Growth Kinetics in Functional Oxide Thin Films Grown by Pulsed Laser Annealing of Chemical Solutions. Chemistry of Materials, 2016, 28, 6136-6145.	6.7	28
16	Disentangling Epitaxial Growth Mechanisms of Solution Derived Functional Oxide Thin Films. Advanced Materials Interfaces, 2016, 3, 1600392.	3.7	33
17	Ultraviolet pulsed laser crystallization of Ba0.8Sr0.2TiO3 films on LaNiO3-coated silicon substrates. Ceramics International, 2016, 42, 4039-4047.	4.8	23
18	Growth of ferroelectric Ba0.8Sr0.2TiO3 epitaxial films by ultraviolet pulsed laser irradiation of chemical solution derived precursor layers. Applied Physics Letters, 2015, 106, 262903.	3.3	22

#	Article	IF	CITATIONS
19	Ultrafast Crystallization of Ce _{0.9} Zr _{0.1} O _{2–<i>y</i>} Epitaxial Films on Flexible Technical Substrates by Pulsed Laser Irradiation of Chemical Solution Derived Precursor Layers. Crystal Growth and Design, 2015, 15, 1957-1967.	3.0	15
20	Chemical solution route to self-assembled epitaxial oxide nanostructures. Chemical Society Reviews, 2014, 43, 2200.	38.1	86
21	Laser-induced metal organic decomposition for Ce0.9Zr0.1O2â^'y epitaxial thin film growth. Journal of Alloys and Compounds, 2013, 574, 246-254.	5.5	11