Yu-Wen Ting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1964345/publications.pdf Version: 2024-02-01

YU-WEN TINC

#	Article	IF	CITATIONS
1	Evaluation of detoxified sugarcane bagasse hydrolysate by atmospheric cold plasma for bacterial cellulose production. International Journal of Biological Macromolecules, 2022, 204, 136-143.	3.6	22
2	Making Concentrated Pterostilbene Highly Bioavailable in Pressure Processed Phospholipid Nanoemulsion. Processes, 2021, 9, 294.	1.3	3
3	Enzymatic degradation of ginkgolic acids by laccase immobilized on core/shell Fe3O4/nylon composite nanoparticles using novel coaxial electrospraying process. International Journal of Biological Macromolecules, 2021, 172, 270-280.	3.6	20
4	Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose. International Journal of Biological Macromolecules, 2021, 175, 526-534.	3.6	40
5	Producing high quality mung bean sprout using atmospheric cold plasma treatment: better physical appearance and higher <scp>γâ€∎minobutyric</scp> acid (<scp>GABA</scp>) content. Journal of the Science of Food and Agriculture, 2021, 101, 6463-6471.	1.7	20
6	Development of a topical applied functional food formulation: Adlay bran oil nanoemulgel. LWT - Food Science and Technology, 2020, 117, 108619.	2.5	17
7	Enhanced bioethanol production using atmospheric cold plasma-assisted detoxification of sugarcane bagasse hydrolysate. Bioresource Technology, 2020, 313, 123704.	4.8	36
8	Enzymatic degradation of ginkgolic acid by laccase immobilized on novel electrospun nanofiber mat. Journal of the Science of Food and Agriculture, 2020, 100, 2705-2712.	1.7	24
9	Nanoemulsified adlay bran oil reduces tyrosinase activity and melanin synthesis in B16F10 cells and zebrafish. Food Science and Nutrition, 2019, 7, 3216-3223.	1.5	15
10	Effect of novel atmosphericâ€pressure jet pretreatment on the drying kinetics and quality of white grapes. Journal of the Science of Food and Agriculture, 2019, 99, 5102-5111.	1.7	39
11	Synthesize of alginate/chitosan bilayer nanocarrier by CCD-RSM guided co-axial electrospray: A novel and versatile approach. Food Research International, 2019, 116, 1163-1172.	2.9	22
12	Self-nanoemulsifying system (SNES) enhanced oral bioavailability of boswellic acids. Journal of Functional Foods, 2018, 40, 520-526.	1.6	6
13	Antiobesity Efficacy of Quercetin-Rich Supplement on Diet-Induced Obese Rats: Effects on Body Composition, Serum Lipid Profile, and Gene Expression. Journal of Agricultural and Food Chemistry, 2018, 66, 70-80.	2.4	32
14	Oral delivery system enhanced the bioavailability of stilbenes: Resveratrol and pterostilbene. BioFactors, 2018, 44, 5-15.	2.6	52
15	Techniques and methods to study functional characteristics of emulsion systems. Journal of Food and Drug Analysis, 2017, 25, 16-26.	0.9	116
16	Optimization of Lactobacillus acidophilus cultivation using taro waste and evaluation of its biological activity. Applied Microbiology and Biotechnology, 2016, 100, 2629-2639.	1.7	16
17	Viscoelastic Emulsion Improved the Bioaccessibility and Oral Bioavailability of Crystalline Compound: A Mechanistic Study Using in Vitro and in Vivo Models. Molecular Pharmaceutics, 2015, 12, 2229-2236.	2.3	50
18	Safety evaluation of tangeretin and the effect of using emulsion-based delivery system: Oral acute and 28-day sub-acute toxicity study using mice. Food Research International, 2015, 74, 140-150.	2.9	20

Yu-Wen Ting

#	Article	IF	CITATIONS
19	Influence of Processing Parameters on Morphology of Polymethoxyflavone in Emulsions. Journal of Agricultural and Food Chemistry, 2015, 63, 652-659.	2.4	6
20	Using in Vitro and in Vivo Models To Evaluate the Oral Bioavailability of Nutraceuticals. Journal of Agricultural and Food Chemistry, 2015, 63, 1332-1338.	2.4	62
21	In vitro and in vivo anti-cancer activity of tangeretin against colorectal cancer was enhanced by emulsion-based delivery system. Journal of Functional Foods, 2015, 15, 264-273.	1.6	54
22	Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. Journal of Functional Foods, 2014, 7, 112-128.	1.6	261
23	Effect of a Labile Methyl Donor on the Transformation of 5-Demethyltangeretin and the Related Implication on Bioactivity. Journal of Agricultural and Food Chemistry, 2013, 61, 8090-8097.	2.4	11
24	Design of high-loading and high-stability viscoelastic emulsions for polymethoxyflavones. Food Research International, 2013, 54, 633-640.	2.9	22
25	Bioactive Peptides/Chitosan Nanoparticles Enhance Cellular Antioxidant Activity of (â^')-Epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry, 2013, 61, 875-881.	2.4	108
26	Nanochemoprevention by encapsulation of (â^')-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chemical Communications, 2012, 48, 2421.	2.2	135
27	Cellular uptake and cytotoxicity of chitosan–caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydrate Polymers, 2012, 89, 362-370.	5.1	111