Jeffrey C Grossman

List of Publications by Citations

Source: https://exaly.com/author-pdf/1964265/jeffrey-c-grossman-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 125
 5,353
 37
 70

 papers
 citations
 h-index
 g-index

 129
 6,820
 12
 6.58

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
125	Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. <i>Physical Review Letters</i> , 2018 , 120, 145301	7.4	494
124	Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. <i>Nano Letters</i> , 2015 , 15, 2794-800	11.5	409
123	Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nature Chemistry, 2014 , 6, 151-8	17.6	261
122	Multilayer Nanoporous Graphene Membranes for Water Desalination. <i>Nano Letters</i> , 2016 , 16, 1027-33	11.5	242
121	Quantifying the potential of ultra-permeable membranes for water desalination. <i>Energy and Environmental Science</i> , 2014 , 7, 1134-1141	35.4	227
120	Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. <i>Nature Chemistry</i> , 2014 , 6, 441-7	17.6	201
119	Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. <i>Nature Communications</i> , 2015 , 6, 8335	17.4	167
118	Ultralow thermal conductivity in all-inorganic halide perovskites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 8693-8697	11.5	156
117	Optically-controlled long-term storage and release of thermal energy in phase-change materials. <i>Nature Communications</i> , 2017 , 8, 1446	17.4	144
116	Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. Journal of Chemical Physics, 2014 , 141, 074704	3.9	138
115	Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS2 p-n vdW Heterostructure. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 2533-9	9.5	126
114	Polarity governs atomic interaction through two-dimensional materials. <i>Nature Materials</i> , 2018 , 17, 999)- 19 04	107
113	Atomic Structure and Dynamics of Single Platinum Atom Interactions with Monolayer MoS. <i>ACS Nano</i> , 2017 , 11, 3392-3403	16.7	94
112	Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes. <i>ACS Central Science</i> , 2018 , 4, 996-1006	16.8	92
111	Optical and Electronic Properties of Two-Dimensional Layered Materials. <i>Nanophotonics</i> , 2017 , 6, 479-4	· 96 .3	86
110	Solid-State Solar Thermal Fuels for Heat Release Applications. <i>Advanced Energy Materials</i> , 2016 , 6, 1502	2 0:0:6 8	74
109	Photovoltaic Performance of PbS Quantum Dots Treated with Metal Salts. <i>ACS Nano</i> , 2016 , 10, 3382-8	16.7	70

(2013-2017)

108	Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 8679-8687	9.5	68	
107	Identifying and Eliminating Emissive Sub-bandgap States in Thin Films of PbS Nanocrystals. <i>Advanced Materials</i> , 2015 , 27, 4481-4486	24	68	
106	Photon energy storage materials with high energy densities based on diacetylene Zobenzene derivatives. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16157-16165	13	62	
105	Atomically Flat Zigzag Edges in Monolayer MoS by Thermal Annealing. <i>Nano Letters</i> , 2017 , 17, 5502-550	07 _{11.5}	58	
104	Correlations from Ion Pairing and the Nernst-Einstein Equation. <i>Physical Review Letters</i> , 2019 , 122, 136	0 9 14	56	
103	Insight on Tricalcium Silicate Hydration and Dissolution Mechanism from Molecular Simulations. <i>ACS Applied Materials & Discounty of the ACS Applied & Discounty of the ACS Applied Materials & Discounty</i>	9.5	56	
102	High-efficiency thermoelectrics with functionalized graphene. <i>Nano Letters</i> , 2015 , 15, 2830-5	11.5	56	
101	Sleep quality, duration, and consistency are associated with better academic performance in college students. <i>Npj Science of Learning</i> , 2019 , 4, 16	6	55	
100	Photoswitchable Molecular Rings for Solar-Thermal Energy Storage. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 854-60	6.4	54	
99	Solar energy generation in three dimensions. <i>Energy and Environmental Science</i> , 2012 , 5, 6880	35.4	52	
98	Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. <i>Nature Communications</i> , 2019 , 10, 3112	17.4	48	
97	Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18152-18159	16.4	48	
96	MoS2 Enhanced T-Phase Stabilization and Tunability Through Alloying. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2304-9	6.4	48	
95	The Characterization, Stability, and Reactivity of Synthetic Calcium Silicate Surfaces from First Principles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 15214-15219	3.8	45	
94	Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials. <i>Nature Communications</i> , 2019 , 10, 2667	17.4	43	
93	Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering. <i>ACS Nano</i> , 2017 , 11, 1548-1558	16.7	42	
92	Interplay between intrinsic defects, doping, and free carrier concentration in SrTiO3 thin films. <i>Physical Review B</i> , 2012 , 85,	3.3	42	
91	High Surface Reactivity and Water Adsorption on NiFe2O4 (111) Surfaces. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 5678-5683	3.8	40	

90	Ultralong 1D Vacancy Channels for Rapid Atomic Migration during 2D Void Formation in Monolayer MoS. <i>ACS Nano</i> , 2018 , 12, 7721-7730	16.7	38
89	Role of Structural Defects in the Water Adsorption Properties of MOF-801. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 5545-5552	3.8	37
88	Optically-regulated thermal energy storage in diverse organic phase-change materials. <i>Chemical Communications</i> , 2018 , 54, 10722-10725	5.8	37
87	Room Temperature Multiferroicity of Charge Transfer Crystals. <i>ACS Nano</i> , 2015 , 9, 9373-9	16.7	35
86	Toward Designing Highly Conductive Polymer Electrolytes by Machine Learning Assisted Coarse-Grained Molecular Dynamics. <i>Chemistry of Materials</i> , 2020 , 32, 4144-4151	9.6	35
85	Charge separation in nanoscale photovoltaic materials: recent insights from first-principles electronic structure theory. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1053-1061		34
84	Rethinking Coal: Thin Films of Solution Processed Natural Carbon Nanoparticles for Electronic Devices. <i>Nano Letters</i> , 2016 , 16, 2951-7	11.5	33
83	Origins of the Stokes Shift in PbS Quantum Dots: Impact of Polydispersity, Ligands, and Defects. <i>ACS Nano</i> , 2018 , 12, 2838-2845	16.7	32
82	Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2640-2645	11.5	31
81	Hierarchical visualization of materials space with graph convolutional neural networks. <i>Journal of Chemical Physics</i> , 2018 , 149, 174111	3.9	30
80	Heat Conduction in Nanostructured Materials Predicted by Phonon Bulk Mean Free Path Distribution. <i>Journal of Heat Transfer</i> , 2015 , 137,	1.8	29
79	Mesoscale modeling of phononic thermal conductivity of porous Si: interplay between porosity, morphology and surface roughness. <i>Journal of Computational Electronics</i> , 2012 , 11, 8-13	1.8	29
78	Photoluminescent Arrays of Nanopatterned Monolayer MoS2. <i>Advanced Functional Materials</i> , 2017 , 27, 1703688	15.6	28
77	Conformal Electroplating of Azobenzene-Based Solar Thermal Fuels onto Large-Area and Fiber Geometries. <i>ACS Applied Materials & Description</i> (1997) <i>ACS Applied Materials & Description</i> (1997) <i>ACS Applied Materials & Description</i> (1997) <i>Description</i> (1997) <i>D</i>	9.5	27
76	Torsional Deformations in Subnanometer MoS Interconnecting Wires. <i>Nano Letters</i> , 2016 , 16, 1210-7	11.5	27
75	Revealing the Cluster-Cloud and Its Role in Nanocrystallization. <i>Advanced Materials</i> , 2019 , 31, e180822.	5 24	26
74	Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes. <i>Nature Communications</i> , 2019 , 10, 3360	17.4	26
73	Atomic Structure and Dynamics of Defects in 2D MoS Bilayers. <i>ACS Omega</i> , 2017 , 2, 3315-3324	3.9	26

(2015-2014)

72	Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning. <i>Physical Review B</i> , 2014 , 89,	3.3	26
71	Failing Forward: Stability of Transparent Electrodes Based on Metal Nanowire Networks. <i>Advanced Materials</i> , 2021 , 33, e2004356	24	25
70	Striated 2D Lattice with Sub-nm 1D Etch Channels by Controlled Thermally Induced Phase Transformations of PdSe. <i>Advanced Materials</i> , 2019 , 31, e1904251	24	24
69	Inorganic Cage Motion Dominates Excited-State Dynamics in 2D-Layered Perovskites (CxH2x+1NH3)2PbI4 (x = 4日). <i>Journal of Physical Chemistry C</i> , 2019 , 123, 27904-27916	3.8	24
68	Three-dimensional photovoltaics. <i>Applied Physics Letters</i> , 2010 , 96, 071902	3.4	24
67	Double-Sided Graphene Oxide Encapsulated Silver Nanowire Transparent Electrode with Improved Chemical and Electrical Stability. <i>ACS Applied Materials & District Stability</i> , 17909-17920	9.5	24
66	Atomic Structure and Dynamics of Self-Limiting Sub-Nanometer Pores in Monolayer WS. <i>ACS Nano</i> , 2018 , 12, 11638-11647	16.7	24
65	Stress effects on the Raman spectrum of an amorphous material: Theory and experiment on a-Si:H. <i>Physical Review B</i> , 2015 , 92,	3.3	23
64	Band Engineering by Controlling vdW Epitaxy Growth Mode in 2D Gallium Chalcogenides. <i>Advanced Materials</i> , 2016 , 28, 7375-82	24	23
63	Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. <i>Nature Communications</i> , 2020 , 11, 3040	17.4	22
62	Computer calculations across time and length scales in photovoltaic solar cells. <i>Energy and Environmental Science</i> , 2016 , 9, 2197-2218	35.4	22
61	Electron-hole separation in ferroelectric oxides for efficient photovoltaic responses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 6566-6571	11.5	21
60	Mechanism of Thermal Reversal of the (Fulvalene)tetracarbonyldiruthenium Photoisomerization: Toward Molecular Solar Thermal Energy Storage. <i>Angewandte Chemie</i> , 2010 , 122, 9110-9113	3.6	21
59	Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene. <i>Nature Communications</i> , 2020 , 11, 823	17.4	20
58	Capillary-fed, thin film evaporation devices. <i>Journal of Applied Physics</i> , 2020 , 128, 130901	2.5	20
57	Mpemba-Like Behavior in Carbon Nanotube Resonators. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2011 , 42, 3907-3912	2.3	19
56	Catalyst Self-Assembly for Scalable Patterning of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. <i>ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Discounty of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon Nanop</i>	9.5	18
55	All-polymeric control of nanoferronics. <i>Science Advances</i> , 2015 , 1, e1501264	14.3	18

54	Preserving nanoscale features in polymers during laser induced graphene formation using sequential infiltration synthesis. <i>Nature Communications</i> , 2020 , 11, 3636	17.4	18
53	Epitaxial Templating of Two-Dimensional Metal Chloride Nanocrystals on Monolayer Molybdenum Disulfide. <i>ACS Nano</i> , 2017 , 11, 6404-6415	16.7	17
52	Investigation of a Quantum Monte Carlo Protocol To Achieve High Accuracy and High-Throughput Materials Formation Energies. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 1943-1951	6.4	17
51	Fundamental Insights on Hydration Environment of Boric Acid and Its Role in Separation from Saline Water. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 1438-1445	3.8	17
50	Solvent- and Anion-Dependent Li+D2ICoupling Strength and Implications on the Thermodynamics and Kinetics of LiD2 Batteries. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 4953-4967	3.8	16
49	Unveiling the phonon scattering mechanisms in half-Heusler thermoelectric compounds. <i>Energy and Environmental Science</i> , 2020 , 13, 5165-5176	35.4	16
48	Predicting charge density distribution of materials using a local-environment-based graph convolutional network. <i>Physical Review B</i> , 2019 , 100,	3.3	15
47	Effect of Chemical Variations in the Structure of Poly(ethylene oxide)-Based Polymers on Lithium Transport in Concentrated Electrolytes. <i>Chemistry of Materials</i> , 2020 , 32, 121-126	9.6	15
46	A 3D-printed molecular ferroelectric metamaterial. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 27204-27210	11.5	14
45	Silver Nanowire Back Electrode Stabilized with Graphene Oxide Encapsulation for Inverted Semitransparent Organic Solar Cells with Longer Lifetime. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1431-	1441	12
44	Chemically Driven Interfacial Coupling in Charge-Transfer Mediated Functional Superstructures. <i>Nano Letters</i> , 2016 , 16, 2851-9	11.5	11
43	Blue Light Emitting Defective Nanocrystals Composed of Earth-Abundant Elements. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 860-867	16.4	11
42	Highly Conductive and Permeable Nanocomposite Ultrafiltration Membranes Using Laser-Reduced Graphene Oxide. <i>Nano Letters</i> , 2021 , 21, 2429-2435	11.5	11
41	Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics. <i>Energy and Environmental Science</i> , 2021 , 14, 3559-3566	35.4	11
40	Natural Carbon By-Products for Transparent Heaters: The Case of Steam-Cracker Tar. <i>Advanced Materials</i> , 2019 , 31, e1900331	24	10
39	Laser-Induced Graphene from Polyimide and Polyethersulfone Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. <i>ACS Applied Materials & Description of the Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. ACS Applied Materials & Description of the Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. ACS Applied Materials & Description of the Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. ACS Applied Materials & Description of the Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. ACS Applied Materials & Description of the Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. ACS Applied Materials & Description of the Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. ACS Applied Materials & Description of the Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. ACS Applied Materials & Description of the Precursors as a Sensing Electrode in Anodic Stripping Voltammetry. ACS Applied Materials & Description of the Precursor o</i>	9.5	10
38	Low-frequency Raman spectrum of 2D layered perovskites: Local atomistic motion or superlattice modes?. <i>Journal of Chemical Physics</i> , 2020 , 153, 044710	3.9	10
37	Conductive carbonaceous membranes: recent progress and future opportunities. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 3270-3289	13	10

Ultra-high aspect ratio functional nanoporous silicon via nucleated catalysts. RSC Advances, 2017, 7, 11537;11582 36 Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive 16.8 35 Design of Oligoethylene Glycol-Based Lithium Electrolytes. ACS Central Science, 2020, 6, 1115-1128 Blue Light Emitting Defective Nanocrystals Composed of Earth-Abundant Elements. Angewandte 8 3.6 34 Chemie, 2020, 132, 870-877 Charge Density and Redox Potential of LiNiO2 Using Ab Initio Diffusion Quantum Monte Carlo. 3.8 33 Journal of Physical Chemistry C, 2020, 124, 5893-5901 Optimization of the Thermoelectric Figure of Merit in Crystalline C60 with Intercalation Chemistry. 32 11.5 7 Nano Letters, 2016, 16, 4203-9 Importance of Equilibration Method and Sampling for Molecular Dynamics Simulations of Solvent-Lithium-Salt Systems in Lithium-Oxygen Batteries. Journal of Chemical Theory and 31 6.4 Computation, **2020**, 16, 7255-7266 Freestanding Organic Charge-Transfer Conformal Electronics. Nano Letters, 2018, 18, 4346-4354 30 11.5 7 Engineering Efficient p-Type TMD/Metal Contacts Using Fluorographene as a Buffer Layer. 6.4 6 29 Advanced Electronic Materials, 2017, 3, 1600318 Bandlike Transport in PbS Quantum Dot Superlattices with Quantum Confinement. Journal of 28 6 6.4 Physical Chemistry Letters, **2019**, 10, 3756-3762 Tuning the Potential Energy Landscape to Suppress Ostwald Ripening in Surface-Supported 6 27 11.5 Catalyst Systems. Nano Letters, 2019, 19, 8388-8398 Kinetics of Sorption in Hygroscopic Hydrogels.. Nano Letters, 2022, 26 6 11.5 Novel nanomaterials for water desalination technology 2013, Functionalized Graphene Superlattice as a Single-Sheet Solar Cell. Advanced Functional Materials, 15.6 24 5 **2015**, 25, 5199-5205 Transport-Based Modeling of Bubble Nucleation on Gas Evolving Electrodes. Langmuir, 2020, 36, 15112- $\frac{1}{4}$ 5118 $_{4}$ 23 Charge Transport in Highly Heterogeneous Natural Carbonaceous Materials. Advanced Functional 22 15.6 3 Materials, **2019**, 29, 1904283 Screening and Understanding Li Adsorption on Two-Dimensional Metallic Materials by Learning 21 3 Physics and Physics-Simplified Learning. Jacs Au, 2021, 1, 1904-1914 Design Rules for Transparent Push-Pull Electron Acceptors: A Case Study on Perylenediimide 6.4 20 3 Derivatives. Journal of Physical Chemistry Letters, 2020, 11, 9265-9271 High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of 19 11 Thermoelectric Half-Heusler Compounds. Small, 2021, 17, e2102045

18	Nanostructured Bulk-Heterojunction Solar Cells Based on Amorphous Carbon. <i>ACS Energy Letters</i> , 2017 , 2, 882-888	20.1	2
17	Emerged Metallicity in Molecular Ferromagnetic Wires. <i>Nano Letters</i> , 2021 , 21, 9746-9753	11.5	2
16	Numerical validation of the dusty-gas model for binary diffusion in low aspect ratio capillaries. <i>Physics of Fluids</i> , 2021 , 33, 121701	4.4	2
15	Atomic Structure of Dislocations and Grain Boundaries in Two-Dimensional PtSe. <i>ACS Nano</i> , 2021 , 15, 16748-16759	16.7	2
14	Emerging Magnetic Interactions in van der Waals Heterostructures. <i>Nano Letters</i> , 2020 , 20, 7852-7859	11.5	2
13	Laser-Induced Tar-Mediated Sintering of Metals and Refractory Carbides in Air. ACS Nano, 2020 , 14, 104	1126. J O	420
12	Atoms to fibers: Identifying novel processing methods in the synthesis of pitch-based carbon fibers <i>Science Advances</i> , 2022 , 8, eabn1905	14.3	2
11	Nanoporous Silicon-Assisted Patterning of Monolayer MoS2 with Thermally Controlled Porosity: A Scalable Method for Diverse Applications. <i>ACS Applied Nano Materials</i> , 2018 , 1, 3548-3556	5.6	1
10	Sound and noisy light: Optical control of phonons in photoswitchable structures. <i>Physical Review B</i> , 2015 , 92,	3.3	1
9	Resonant behavior in heat transfer across weak molecular interfaces. <i>Journal of Applied Physics</i> , 2013 , 114, 234308	2.5	1
8	Evidence of Conjugation Enhancement in P3HT/SWNT Mixtures for Organic Photovoltaics. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1286, 56		1
7	Oxynitride-Encapsulated Silver Nanowire Transparent Electrode with Enhanced Thermal, Electrical, and Chemical Stability <i>ACS Applied Materials & Discrete Stability</i> ACS Applied Materials & Discrete Stability Discrete Stability ACS Applied Materials & Discrete Stability	9.5	1
6	Laser-Induced Cooperative Transition in Molecular Electronic Crystal. Advanced Materials, 2021, 33, e21	озроо	1
5	Unintended consequences: Why carbonation can dominate in microscale hydration of calcium silicates. <i>Journal of Materials Research</i> , 2015 , 30, 2425-2433	2.5	O
4	Upgrading carbonaceous materials: Coal, tar, pitch, and beyond. <i>Matter</i> , 2022 , 5, 430-447	12.7	O
3	Adsorption-based membranes for air separation using transition metal oxides. <i>Nanoscale Advances</i> , 2021 , 3, 4502-4512	5.1	O
2	Laser-Induced Cooperative Transition in Molecular Electronic Crystal (Adv. Mater. 39/2021). <i>Advanced Materials</i> , 2021 , 33, 2170309	24	
1	Cyclobutene based macrocycles. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 3529-3538	7.8	