Michael Berhanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1963887/publications.pdf Version: 2024-02-01

MICHAEL REPHANIL

#	Article	IF	CITATIONS
1	Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium. Physical Review Letters, 2007, 98, 044502.	2.9	364
2	Magnetic field reversals in an experimental turbulent dynamo. Europhysics Letters, 2007, 77, 59001.	0.7	209
3	The von K $ ilde{A}_i$ rm $ ilde{A}_i$ n Sodium experiment: Turbulent dynamical dynamos. Physics of Fluids, 2009, 21, .	1.6	89
4	Dynamo regimes and transitions in the VKS experiment. European Physical Journal B, 2010, 77, 459-468.	0.6	70
5	Chaotic Dynamos Generated by a Turbulent Flow of Liquid Sodium. Physical Review Letters, 2008, 101, 074502.	2.9	67
6	Speed of a swimming sheet in Newtonian and viscoelastic fluids. Physical Review E, 2013, 87, 013015.	0.8	56
7	Direct Numerical Simulations of Capillary Wave Turbulence. Physical Review Letters, 2014, 112, 234501.	2.9	46
8	Aggregation of frictional particles due to capillary attraction. Physical Review E, 2011, 83, 051403.	0.8	42
9	Decay of capillary wave turbulence. Physical Review E, 2012, 85, 066311.	0.8	42
10	Shape and dynamics of seepage erosion in a horizontal granular bed. Physical Review E, 2012, 86, 041304.	0.8	39
11	Role of the basin boundary conditions in gravity wave turbulence. Journal of Fluid Mechanics, 2015, 781, 196-225.	1.4	36
12	Energy flux measurement from the dissipated energy in capillary wave turbulence. Physical Review E, 2014, 89, 023003.	0.8	35
13	Space-time-resolved capillary wave turbulence. Physical Review E, 2013, 87, .	0.8	33
14	Heterogeneous Structure of Granular Aggregates with Capillary Interactions. Physical Review Letters, 2010, 105, 098002.	2.9	30
15	Observation of resonant interactions among surface gravity waves. Journal of Fluid Mechanics, 2016, 805, .	1.4	29
16	Bistability between a stationary and an oscillatory dynamo in a turbulent flow of liquid sodium. Journal of Fluid Mechanics, 2009, 641, 217-226.	1.4	25
17	Experimental study of three-wave interactions among capillary-gravity surface waves. Physical Review E, 2016, 93, 043110.	0.8	24
18	Erosion patterns on dissolving and melting bodies. Physical Review Fluids, 2016, 1, .	1.0	24

MICHAEL BERHANU

#	Article	IF	CITATIONS
19	Coexistence of solitons and extreme events in deep water surface waves. Physical Review Fluids, 2018, 3, .	1.0	24
20	Buoyancy-driven dissolution of inclined blocks: Erosion rate and pattern formation. Physical Review Fluids, 2020, 5, .	1.0	24
21	Influence of an external magnetic field on forced turbulence in a swirling flow of liquid metal. Physics of Fluids, 2009, 21, .	1.6	23
22	Solutal convection induced by dissolution. Physical Review Fluids, 2019, 4, .	1.0	21
23	Transition from a dissipative to a quasi-elastic system of particles with tunable repulsive interactions. Europhysics Letters, 2014, 106, 44005.	0.7	18
24	Streamwise Dissolution Patterns Created by a Flowing Water Film. Physical Review Letters, 2020, 125, 194502.	2.9	16
25	Experimental observation of hydroelastic three-wave interactions. Physical Review Fluids, 2017, 2, .	1.0	15
26	Transport of Magnetic Field by a Turbulent Flow of Liquid Sodium. Physical Review Letters, 2006, 97, 074501.	2.9	14
27	Experiments on generation of surface waves by an underwater moving bottom. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150069.	1.0	13
28	The VKS experiment: turbulent dynamical dynamos. Comptes Rendus Physique, 2008, 9, .	0.3	12
29	Turbulence of capillary waves forced by steep gravity waves. Journal of Fluid Mechanics, 2018, 850, 803-843.	1.4	11
30	Solutal convection instability caused by dissolution. Physics of Fluids, 2021, 33, .	1.6	11
31	Saturation of the Inverse Cascade in Surface Gravity-Wave Turbulence. Physical Review Letters, 2020, 125, 134501.	2.9	10
32	Forced three-wave interactions of capillary-gravity surface waves. Physical Review Fluids, 2019, 4, .	1.0	10
33	Uplift of an elastic membrane by a viscous flow. Physical Review E, 2019, 99, 043102.	0.8	9
34	Transition to a labyrinthine phase in a driven granular medium. Physical Review E, 2015, 92, 062205.	0.8	8
35	Capillary wave turbulence experiments in microgravity. Europhysics Letters, 2019, 128, 34001.	0.7	8
36	Self-similar gravity wave spectra resulting from the modulation of bound waves. Physical Review Fluids, 2018, 3, .	1.0	8

MICHAEL BERHANU

#	Article	lF	CITATIONS
37	Reduction of velocity fluctuations in a turbulent flow of gallium by an external magnetic field. Physical Review E, 2008, 78, 015302.	0.8	7
38	Patterns in magnetic granular media at the crossover from two to three dimensions. Physical Review E, 2020, 102, 042907.	0.8	6
39	Impact of the Dissipation on the Nonlinear Interactions and Turbulence of Gravity-Capillary Waves. Fluids, 2022, 7, 137.	0.8	4
40	Tuning the distance to equipartition by controlling the collision rate in a driven granular gas experiment. Physical Review E, 2020, 101, 032903.	0.8	3
41	Observation expérimentale en bassin à vagues des interactions résonantes à quatre ondes. Houille Blanche, 2017, 103, 56-63.	0.3	3
42	Three-dimensional turbulence generated homogeneously by magnetic particles. Physical Review Fluids, 2021, 6, .	1.0	3
43	Alcove formation in dissolving cliffs driven by density inversion instability. Physics of Fluids, 0, , .	1.6	3
44	Wave spectroscopy in a driven granular material. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	2