List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1963829/publications.pdf

Version: 2024-02-01

		38742	85541
329	9,412	50	71
papers	citations	h-index	g-index
334	334	334	9625
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel microgel culture system as semi-solid three-dimensional in vitro model for the study of multiple myeloma proliferation and drug resistance. , 2022, 135, 212749.		7
2	Adipose tissue derived stromal cells in a gelatin-based 3D matrix with exclusive ascorbic acid signalling emerged as a novel neural tissue engineering construct: an innovative prototype for soft tissue. International Journal of Energy Production and Management, 2022, 9, .	3.7	2
3	EDUCATIONAL INCLUSION INTO DIVERSITY, FACING SCHOOL LEAVING: INNOVATIVE METHODOLOGIES TO SUPPORT ETHNIC MINORITY STUDENTS AND STOP HATE SPEECH IN EUROPE. EDULEARN Proceedings, 2022, , .	0.0	0
4	Effective elastin-like recombinamers coating on poly(vinylidene) fluoride membranes for mesenchymal stem cell culture. European Polymer Journal, 2021, 146, 110269.	5.4	3
5	Crystallization Monitoring of Semicrystalline Poly(vinylidene fluoride)/1-Ethyl-3-methylimidazolium Hexafluorophosphate [Emim][PF ₆] Ionic Liquid Blends. Crystal Growth and Design, 2021, 21, 4406-4416.	3.0	8
6	Covalent functionalization of decellularized tissues accelerates endothelialization. Bioactive Materials, 2021, 6, 3851-3864.	15.6	10
7	Biomimetic 3D Environment Based on Microgels as a Model for the Generation of Drug Resistance in Multiple Myeloma. Materials, 2021, 14, 7121.	2.9	6
8	A cellâ€free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1428-1438.	3.4	5
9	A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model. Carbohydrate Polymers, 2020, 231, 115734.	10.2	58
10	Non-Markovian Methods in Glass Transition. Polymers, 2020, 12, 1997.	4.5	1
11	Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(ZrO·53Ti0.47)O3 composites. Polymer, 2020, 204, 122811.	3.8	7
12	Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. Materials Science and Engineering C, 2020, 117, 111281.	7.3	22
13	In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go?. International Journal of Molecular Sciences, 2020, 21, 5747.	4.1	16
14	Design and characterization of microspheres for a 3D mesenchymal stem cell culture. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111322.	5.0	10
15	Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends. Crystal Growth and Design, 2020, 20, 4967-4979.	3.0	12
16	Temperature and pH responsive behavior of antifouling zwitterionic mesoporous silica nanoparticles. Journal of Applied Physics, 2020, 127, .	2.5	5
17	Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid – Gelatin injectable hydrogels. Bioelectrochemistry, 2020, 134, 107536.	4.6	23
18	Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field. Surface and Coatings Technology, 2019, 377, 124856.	4.8	14

#	Article	IF	CITATIONS
19	Freeze-extraction microporous electroactive supports for cell culture. European Polymer Journal, 2019, 119, 531-540.	5.4	4
20	Influence of Cation and Anion Type on the Formation of the Electroactive Î ² -Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. Journal of Physical Chemistry C, 2019, 123, 27917-27926.	3.1	50
21	Biomimetic microspheres for 3D mesenchymal stem cell culture and characterization. Colloids and Surfaces B: Biointerfaces, 2019, 177, 68-76.	5.0	19
22	An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons. RSC Advances, 2019, 9, 14452-14464.	3.6	9
23	Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type. Polymer, 2019, 171, 58-69.	3.8	17
24	Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene) Tj ETQq0 0 0 rgBT and Technologies, 2019, 21, e00104.	/Overlock 3.3	10 Tf 50 54 35
25	Antifouling zwitterionic <scp>pSBMA</scp> â€ <scp>MSN</scp> particles for biomedical applications. Polymers for Advanced Technologies, 2019, 30, 688-697.	3.2	9
26	Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: Dielectric and electrical conductivity behavior. Polymer, 2018, 143, 164-172.	3.8	32
27	Crystallization kinetics of poly(ethylene oxide) confined in semicrystalline poly(vinylidene) fluoride. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 588-597.	2.1	11
28	Conformational Changes and Dynamics during Adsorption of Macromolecules with Different Degree of Polymerization Studied by Monte Carlo Simulations. Macromolecular Theory and Simulations, 2018, 27, 1800012.	1.4	3
29	Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies. Journal of Tissue Engineering, 2018, 9, 204173141878982.	5.5	18
30	Fluctuations of conformational mobility of macromolecules around the glass transition. Physical Review E, 2018, 97, 062605.	2.1	2
31	Fast degrading polymer networks based on carboxymethyl chitosan. Materials Today Communications, 2017, 10, 54-66.	1.9	7
32	Influence of oxygen levels on chondrogenesis of porcine mesenchymal stem cells cultured in polycaprolactone scaffolds. Journal of Biomedical Materials Research - Part A, 2017, 105, 1684-1691.	4.0	18
33	Biodegradable chitosan-poly(ƕcaprolactone) dialdehyde copolymer networks for soft tissue engineering. Polymer Degradation and Stability, 2017, 138, 47-54.	5.8	12
34	Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydrate Polymers, 2017, 167, 52-58.	10.2	58
35	Chitosan patterning on titanium implants. Progress in Organic Coatings, 2017, 111, 23-28.	3.9	21
36	Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds. Journal of Tissue Engineering, 2017, 8, 204173141769754.	5.5	13

#	Article	IF	CITATIONS
37	Emulsion based microencapsulation of proteins in poly(L-lactic acid) films and membranes for the controlled release of drugs. Polymer Degradation and Stability, 2017, 146, 24-33.	5.8	5
38	Development of a Ta/TaN/TaNx(Ag)y/TaN nanocomposite coating system and bio-response study for biomedical applications. Vacuum, 2017, 145, 55-67.	3.5	20
39	A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	9
40	Synthesis of highly swellable hydrogels of water-soluble carboxymethyl chitosan and poly(ethylene) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5
41	Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. International Journal of Molecular Sciences, 2017, 18, 2391.	4.1	34
42	Electrospun PVA/Bentonite Nanocomposites Mats for Drug Delivery. Materials, 2017, 10, 1448.	2.9	25
43	Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits. International Journal of Artificial Organs, 2017, 40, 350-357.	1.4	15
44	Hydrophobic/hydrophilic P(VDFâ€TrFE)/PHEA polymer blend membranes. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 672-679.	2.1	4
45	<i>In vitro</i> assessment of the biological response of Ti6Al4V implants coated with hydroxyapatite microdomains. Journal of Biomedical Materials Research - Part A, 2016, 104, 2723-2729.	4.0	15
46	Mechanical fatigue performance of PCLâ€chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 330-338.	3.4	9
47	Effects of Solvent Crystallization in Swollennet-Poly(ethyl acrylate) α Relaxation Dynamics. Journal of Physical Chemistry B, 2016, 120, 13206-13217.	2.6	1
48	Role of chemical crosslinking in material-driven assembly of fibronectin (nano)networks: 2D surfaces and 3D scaffolds. Colloids and Surfaces B: Biointerfaces, 2016, 148, 324-332.	5.0	9
49	Surface stiffening and enhanced photoluminescence of ion implanted cellulose – polyvinyl alcohol – silica composite. Carbohydrate Polymers, 2016, 153, 619-630.	10.2	9
50	Local deformation in a hydrogel induced by an external magnetic field. Journal of Materials Science, 2016, 51, 9979-9990.	3.7	6
51	Biodegradable polyester networks including hydrophilic groups favor BMSCs differentiation and can be eroded by macrophage action. Polymer Degradation and Stability, 2016, 130, 38-46.	5.8	5
52	Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells. Biomedical Physics and Engineering Express, 2016, 2, 035005.	1.2	5
53	Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomaterialia, 2016, 33, 1-12.	8.3	92
54	Prediction of the "in vivo―mechanical behavior of biointegrable acrylic macroporous scaffolds. Materials Science and Engineering C, 2016, 61, 651-658.	7.3	1

#	Article	IF	CITATIONS
55	MC3T3-E1 Cell Response to Ti _{1–<i>x</i>} Ag _{<i>x</i>} and Ag-TiN _{<i>x</i>} Electrodes Deposited on Piezoelectric Poly(vinylidene fluoride) Substrates for Sensor Applications. ACS Applied Materials & Interfaces, 2016, 8, 4199-4207.	8.0	10
56	Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene) Tj ETQq0 0 0 rg	gBT /Overlo	ock 10 Tf 50
57	Design and validation of a biomechanical bioreactor for cartilage tissue culture. Biomechanics and Modeling in Mechanobiology, 2016, 15, 471-478.	2.8	13
58	Phase morphology and crystallinity of poly(vinylidene fluoride)/poly(ethylene oxide) piezoelectric blend membranes. Materials Today Communications, 2015, 4, 214-221.	1.9	18
59	Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1391-1400.	2.1	23
60	Time Evolution of <i>in Vivo</i> Articular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. International Journal of Artificial Organs, 2015, 38, 210-223.	1.4	22
61	Implantation of a Polycaprolactone Scaffold with Subchondral Bone Anchoring Ameliorates Nodules Formation and Other Tissue Alterations. International Journal of Artificial Organs, 2015, 38, 659-666.	1.4	16
62	Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation. Macromolecular Bioscience, 2015, 15, 262-274.	4.1	7
63	Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers. Applied Physics A: Materials Science and Processing, 2015, 120, 731-743.	2.3	16
64	An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. Journal of Biomechanics, 2015, 48, 1310-1317.	2.1	27
65	Macroporous thin membranes for cell transplant in regenerative medicine. Biomaterials, 2015, 67, 254-263.	11.4	1
66	Determining the influence of N-acetylation on water sorption in chitosan films. Carbohydrate Polymers, 2015, 133, 110-116.	10.2	27

67	Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Progress in Organic Coatings, 2015, 85, 151-158.	3.9	79
68	Engineering Interpenetrating Polymer Networks of Poly(2-Hydroxyethyl Acrylate) asEx VivoPlatforms for Articular Cartilage Regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 745-754.	3.4	4
69	Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production. Macromolecular Materials and Engineering, 2015, 300, 977-988.	3.6	22
70	Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films. Cellulose, 2015, 22, 1911-1929.	4.9	49
71	Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 48, 60-69.	3.1	56

Effect of the degree of porosity on the performance of poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 Td (fluoride-trifluoroeth 2.7 33 Solid State Ionics, 2015, 280, 1-9.

JOSé L GÃ³MEZ-RIBELLES

#	Article	IF	CITATIONS
73	Thermal analysis of water in reinforced plasma-polymerised poly(2-hydroxyethyl acrylate) hydrogels. European Polymer Journal, 2015, 72, 523-534.	5.4	22
74	Effect of the Physicochemical Properties of Pure or Chitosan-Coated Poly(L-Lactic Acid)Scaffolds on the Chondrogenic Differentiation of Mesenchymal Stem Cells from Osteoarthritic Patients. Tissue Engineering - Part A, 2015, 21, 716-728.	3.1	10
75	<i>In vitro</i> mechanical fatigue behavior of polyâ€É›â€€aprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1037-1043.	3.4	14
76	Crosslinked fibrin gels for tissue engineering: Two approaches to improve their properties. Journal of Biomedical Materials Research - Part A, 2015, 103, 614-621.	4.0	36
77	Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. Journal of Biomedical Materials Research - Part A, 2015, 103, 1106-1118.	4.0	31
78	Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, 3229-3236.	4.0	14
79	Physicochemical properties of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium ion battery applications: Influence of poly(ethylene oxide) molecular weight. Solid State Ionics, 2014, 268, 54-67.	2.7	32
80	Influence of electrospinning parameters on poly(hydroxybutyrate) electrospun membranes fiber size and distribution. Polymer Engineering and Science, 2014, 54, 1608-1617.	3.1	35
81	Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. Journal of Power Sources, 2014, 245, 779-786.	7.8	139
82	Processing and characterization of α-elastin electrospun membranes. Applied Physics A: Materials Science and Processing, 2014, 115, 1291-1298.	2.3	12
83	New porous polycaprolactone–silica composites for bone regeneration. Materials Science and Engineering C, 2014, 40, 418-426.	7.3	34
84	Poly(É›-caprolactone) Electrospun Scaffolds Filled with Nanoparticles. Production and Optimization According to Taguchi's Methodology. Journal of Macromolecular Science - Physics, 2014, 53, 781-799.	1.0	18
85	Cell-free cartilage engineering approach using hyaluronic acid–polycaprolactone scaffolds: A study <i>inÂvivo</i> . Journal of Biomaterials Applications, 2014, 28, 1304-1315.	2.4	29
86	Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Advances, 2014, 4, 33013-33021.	3.6	77
87	Hybrid Polycaprolactone/Silica Porous Membranes Produced by Solâ€Gel. Macromolecular Symposia, 2014, 341, 34-44.	0.7	9
88	Molecular dynamics in polymer networks containing caprolactone and ethylene glycol moieties studied by dielectric relaxation spectroscopy. Journal of Non-Crystalline Solids, 2014, 404, 109-115.	3.1	4
89	Polycaprolactone membranes reinforced by toughened sol–gel produced silica networks. Journal of Sol-Gel Science and Technology, 2014, 71, 136-146.	2.4	1
90	Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry, 2014, 117, 123-130.	3.6	14

#	Article	IF	CITATIONS
91	An "in vitro―experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 125-131.	3.1	22
92	Evolution of the properties of a poly(<scp>l</scp> â€lactic acid) scaffold with double porosity during <i>in vitro</i> degradation in a phosphateâ€buffered saline solution. Journal of Applied Polymer Science, 2014, 131, .	2.6	16
93	Chitosan–silica hybrid porous membranes. Materials Science and Engineering C, 2014, 42, 553-561.	7.3	59
94	Conformation and dynamics of a diluted chain in the presence of an adsorbing wall: A simulation with the bond fluctuation model. Journal of Non-Crystalline Solids, 2014, 402, 7-15.	3.1	5
95	Fibrinâ€chitosan composite substrate for <i>in vitro</i> culture of chondrocytes. Journal of Biomedical Materials Research - Part A, 2013, 101A, 404-412.	4.0	3
96	Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 1737-1750.	4.2	41
97	Chitosan microparticles for "in vitro―3D culture of human chondrocytes. RSC Advances, 2013, 3, 6362.	3.6	6
98	Composition-dependent physical properties of poly[(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 467 Td (3494-3504.	fluoride)-cc 3.7	o-trifluoroethyl 36
99	Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 1293-1308.	3.6	65
100	Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 503-513.	3.6	35
101	Silica phase formed by sol–gel reaction in the nano- and micro-pores of a polymer hydrogel. Journal of Non-Crystalline Solids, 2013, 379, 12-20.	3.1	3
102	Fatigue prediction in fibrin poly-Îμ-caprolactone macroporous scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 55-61.	3.1	22
103	Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(<scp>L</scp> ″actic acid) scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 173-186.	3.4	61
104	Computer simulation of the heterogeneity of segmental dynamics in amorphous polymers. Journal of Non-Crystalline Solids, 2013, 362, 175-179.	3.1	5
105	Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. Solid State Ionics, 2013, 235, 42-50.	2.7	104
106	Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications. Electrochimica Acta, 2013, 88, 473-476.	5.2	39
107	Improved regeneration of articular cartilage by human mesenchymal stem cells through osteoclasts and BMP2 signaling. Osteoarthritis and Cartilage, 2013, 21, S116.	1.3	1
108	Fibronectin fixation on poly(ethyl acrylate)–based copolymers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 991-997.	3.4	7

#	Article	IF	CITATIONS
109	Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acidâ€coated polycaprolactone scaffolds. Journal of Biomedical Materials Research - Part A, 2013, 101A, 518-527.	4.0	30
110	Chondrocytes Cultured in an Adhesive Macroporous Scaffold Subjected to Stirred Flow Bioreactor Behave Like in Static Culture. Journal of Biomaterials and Tissue Engineering, 2013, 3, 312-319.	0.1	8
111	Fabrication of Poly(lactic acid)-Poly(ethylene oxide) Electrospun Membranes with Controlled Micro to Nanofiber Sizes. Journal of Nanoscience and Nanotechnology, 2012, 12, 6746-6753.	0.9	7
112	Water and protein dynamics in protein-water mixtures over wide range of composition. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19, 1239-1246.	2.9	13
113	Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 2012, 358, 3141-3149.	3.1	46
114	[P1.034] Comparing Performance of Solid Polymer Electrolytes Based on Poly(Vinylidene Fluoride –) Tj ETQq0 0 751-752.	0 rgBT /C 1.2	overlock 10 0
115	Electrical and thermal behavior of γ-phase poly(vinylidene fluoride)/NaY zeolite composites. Microporous and Mesoporous Materials, 2012, 161, 98-105.	4.4	39
116	Conformation and segmental mobility of a diluted single polymer chain simulated with bond fluctuation model. Journal of Non-Crystalline Solids, 2012, 358, 1452-1458.	3.1	2
117	Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. Journal of Macromolecular Science - Physics, 2012, 51, 411-424.	1.0	20
118	Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy. European Physical Journal E, 2012, 35, 41.	1.6	68
119	Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomedical Materials (Bristol), 2012, 7, 035004.	3.3	83
120	Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polymer Degradation and Stability, 2012, 97, 1621-1632.	5.8	68
121	Physical-chemical properties of cross-linked chitosan electrospun fiber mats. Polymer Testing, 2012, 31, 1062-1069.	4.8	52
122	Influence of crystallinity and fiber orientation on hydrophobicity and biological response of poly(I-lactide) electrospun mats. Soft Matter, 2012, 8, 5818.	2.7	66
123	<i>InÂvitro</i> 3D culture of human chondrocytes using modified ε -caprolactone scaffolds with varying hydrophilicity and porosity. Journal of Biomaterials Applications, 2012, 27, 299-309.	2.4	17
124	Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Advances, 2012, 2, 11504.	3.6	106
125	Influence of filler size and concentration on the low and high temperature dielectric response of poly(vinylidene fluoride) /Pb(Zr0.53Ti0.47)O3 composites. Journal of Polymer Research, 2012, 19, 1.	2.4	17
126	Assessment of parameters influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat production. Polymer Engineering and Science, 2012, 52, 1293-1300.	3.1	16

José L GÃ³MEZ-RIBELLES

#	Article	IF	CITATIONS
127	Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2330-2341.	4.0	9
128	Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3276-3286.	4.0	40
129	Thermal transitions and dynamics in nanocomposite hydrogels. Journal of Thermal Analysis and Calorimetry, 2012, 108, 1067-1078.	3.6	2
130	Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers, 2012, 87, 1295-1301.	10.2	90
131	Implantation of bilayered plla scaffolds loaded with mesenchymal stem cells (MSCS) in a sheep model of osteochondral lesions. Osteoarthritis and Cartilage, 2012, 20, S274-S275.	1.3	0
132	Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polymer Testing, 2012, 31, 770-776.	4.8	25
133	Influence of Ferrite Nanoparticle Type and Content on the Crystallization Kinetics and Electroactive Phase Nucleation of Poly(vinylidene fluoride). Langmuir, 2011, 27, 7241-7249.	3.5	121
134	Cooperative Segmental Motions in Ethyl Acrylate/Triethylene Glycol Dimethacrylate Copolymer Networks Studied by Dielectric Techniques. Macromolecules, 2011, 44, 8233-8244.	4.8	4
135	Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011, 12, 015001.	6.1	115
136	A simple model for cooperative and non-exponential processes in non-crystalline polymers. Journal of Non-Crystalline Solids, 2011, 357, 367-370.	3.1	3
137	Biodegradable poly(<scp>L</scp> ″actide) and polycaprolactone block copolymer networks. Polymer International, 2011, 60, 264-270.	3.1	4
138	Glass transition and polymer dynamics in silver/poly(methyl methacrylate) nanocomposites. European Polymer Journal, 2011, 47, 1514-1525.	5.4	39
139	Water and polymer dynamics in poly(hydroxyl ethyl acrylate-co-ethyl acrylate) copolymer hydrogels. European Polymer Journal, 2011, 47, 2391-2402.	5.4	12
140	Tailoring porous structure of ferroelectric poly(vinylidene fluoride-trifluoroethylene) by controlling solvent/polymer ratio and solvent evaporation rate. European Polymer Journal, 2011, 47, 2442-2450.	5.4	66
141	Glass transition and dynamics in BSA–water mixtures over wide ranges of composition studied by thermal and dielectric techniques. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1984-1996.	2.3	50
142	Molecular mobility in biodegradable poly(\$ varepsilon\$ -caprolactone)/poly(hydroxyethyl acrylate) networks. European Physical Journal E, 2011, 34, 37.	1.6	9
143	Glass Transition and Dynamics in Lysozyme–Water Mixtures Over Wide Ranges of Composition. Food Biophysics, 2011, 6, 199-209.	3.0	37
144	Polymer segmental dynamics and solvent thermal transitions in poly(ethyl acrylate)/ <i>p</i> â€xylene mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 455-466.	2.1	4

#	Article	IF	CITATIONS
145	Water sorption characteristics of poly(2â€hydroxyethyl acrylate)/silica nanocomposite hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 657-668.	2.1	40
146	Segmented poly(urethaneâ€urea) elastomers based on polycaprolactone: Structure and properties. Journal of Applied Polymer Science, 2011, 119, 2093-2104.	2.6	36
147	Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl) Tj ETQq1 1 0.78431	14 rgBT /O	verlock 10 Tf
148	Semicrystalline ordering in polymeric systems simulated by Bond Fluctuation Model. Polymer, 2011, 52, 571-576.	3.8	0
149	Kinetics of free radical polymerization probed by dielectric relaxation spectroscopy under high conductivity conditions. Polymer, 2011, 52, 1944-1953.	3.8	11
150	Water and protein dynamics in protein - Water mixtures over wide ranges of composition. , 2011, , .		1
151	Poly(vinylidene fluoride-trifluoroethylene) (72/28) interconnected porous membranes obtained by crystallization from solution. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	12
152	Three-Dimensional Scaffolds as a Model System for Neural and Endothelial â€~In Vitro' Culture. Journal of Biomaterials Applications, 2011, 26, 293-310.	2.4	6
153	Structure and dynamics in poly(L-lactide) copolymer networks. Colloid and Polymer Science, 2010, 288, 555-565.	2.1	7
154	Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. Journal of Materials Science: Materials in Medicine, 2010, 21, 33-44.	3.6	66
155	Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation. Journal of Materials Science, 2010, 45, 1328-1335.	3.7	41
156	Novel poly(<scp>L</scp> â€lactic acid)/hyaluronic acid macroporous hybrid scaffolds: Characterization and assessment of cytotoxicity. Journal of Biomedical Materials Research - Part A, 2010, 94A, 856-869.	4.0	35
157	Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1182-1193.	4.0	41
158	Poly[(vinylidene fluoride)â€ <i>co</i> â€ŧrifluoroethylene] Membranes Obtained by Isothermal Crystallization from Solution. Macromolecular Materials and Engineering, 2010, 295, 523-528.	3.6	38
159	Water sorption and polymer dynamics in hybrid poly(2-hydroxyethyl-co-ethyl acrylate)/silica hydrogels. European Polymer Journal, 2010, 46, 101-111.	5.4	32
160	Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(l-lactide) – Hybrid membranes. Composites Science and Technology, 2010, 70, 1805-1812.	7.8	48
161	Characterization of calcium phosphate layers grown on polycaprolactone for tissue engineering purposes. Composites Science and Technology, 2010, 70, 1796-1804.	7.8	42
162	Influence of the nature of the porous confining network on the sorption, diffusion and mechanical properties of hydrogel IPNs. European Polymer Journal, 2010, 46, 774-782.	5.4	14

#	Article	IF	CITATIONS
163	Study of Polymer Glass Transition and Segmental Motions in Partially Crystallized Poly(ethyl) Tj ETQq1 1 0.7843	14 rgBT /	Overlock 10
164	Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly(vinylidene fluoride) Electrospun Membranes. Soft Materials, 2010, 8, 274-287.	1.7	241
165	Influence of solvent on the network structure formed by free radical polymerization of tri-ethylene glycol dimethacrylate: A dielectric study. Journal of Non-Crystalline Solids, 2010, 356, 616-620.	3.1	2
166	Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Journal of Non-Crystalline Solids, 2010, 356, 2127-2133.	3.1	33
167	In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. American Journal of Sports Medicine, 2010, 38, 509-519.	4.2	91
168	The Role of Solvent Evaporation in the Microstructure of Electroactive β-Poly(Vinylidene Fluoride) Membranes Obtained by Isothermal Crystallization. Soft Materials, 2010, 9, 1-14.	1.7	40
169	Influence of Silver Nanoparticles Concentration on the <i>α</i> - to <i>β</i> -Phase Transformation and the Physical Properties of Silver Nanoparticles Doped Poly(vinylidene fluoride) Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 2910-2916.	0.9	42
170	Bond fluctuation model to describe physical aging in polymeric materials. Journal of Chemical Physics, 2009, 130, 214905.	3.0	8
171	Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 191-202.	3.4	33
172	Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 277-286.	3.4	53
173	Cooperativity in the Conformational Rearrangements of Polymer Chain Segments as Seen by Bond Fluctuation Model. Macromolecular Theory and Simulations, 2009, 18, 355-362.	1.4	3
174	Poly(l-lactide) networks with tailored water sorption. Colloid and Polymer Science, 2009, 287, 671-681.	2.1	17
175	Segmental dynamics in poly(εâ€caprolactone)/poly(<scp>L</scp> ″actide) copolymer networks. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 183-193.	2.1	24
176	Physical interactions in macroporous scaffolds based on poly(É›-caprolactone)/chitosan semi-interpenetrating polymer networks. Polymer, 2009, 50, 2058-2064.	3.8	38
177	The distribution of the relaxation times as seen by bond fluctuation model. Polymer, 2009, 50, 5618-5622.	3.8	7
178	Analysis of the Biological Response of Endothelial and Fibroblast Cells Cultured on Synthetic Scaffolds with Various Hydrophilic/Hydrophobic Ratios: Influence of Fibronectin Adsorption and Conformation. Tissue Engineering - Part A, 2009, 15, 1331-1341.	3.1	60
179	Real-Time Monitoring of Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former. Journal of Physical Chemistry B, 2009, 113, 14209-14217.	2.6	22
180	Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former: Influence of Different Crystallization Pathways. Journal of Physical Chemistry B, 2009, 113, 14196-14208.	2.6	12

JOSé L GÃ³MEZ-RIBELLES

#	Article	IF	CITATIONS
181	Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique. Journal of Materials Science: Materials in Medicine, 2008, 19, 2047-2053.	3.6	69
182	Effect of crosslinking on porous poly(methyl methacrylate) produced by phase separation. Colloid and Polymer Science, 2008, 286, 209-216.	2.1	27
183	Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 378-380.	2.7	65
184	Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering. Journal of Biomedical Materials Research - Part A, 2008, 85A, 25-35.	4.0	85
185	A porous PCL scaffold promotes the human chondrocytes redifferentiation and hyalineâ€specific extracellular matrix protein synthesis. Journal of Biomedical Materials Research - Part A, 2008, 85A, 1082-1089.	4.0	38
186	Threeâ€dimensional nanocomposite scaffolds with ordered cylindrical orthogonal pores. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 541-549.	3.4	34
187	Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 303-313.	3.4	49
188	Blending polysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 544-554.	3.4	27
189	Polymerization effects on molecular dynamics of n-ethylene glycol dimethacrylates followed by dielectric relaxation spectroscopy. European Polymer Journal, 2008, 44, 155-170.	5.4	11
190	Water-induced (nano) organization in poly(ethyl acrylate-co-hydroxyethyl acrylate) networks. European Polymer Journal, 2008, 44, 1996-2004.	5.4	23
191	Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 2008, 44, 2207-2218.	5.4	77
192	Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Materials Science and Engineering C, 2008, 28, 1356-1365.	7.3	39
193	Phenomenological theory of structural relaxation based on a thermorheologically complex relaxation time distribution. European Physical Journal E, 2008, 27, 87-97.	1.6	1
194	Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering - Part A, 2008, 14, 1365-1375.	3.1	48
195	Properties of poly(2-hydroxyethyl acrylate)-silica nanocomposites obtained by the sol–gel process. Journal of Non-Crystalline Solids, 2008, 354, 1900-1908.	3.1	39
196	Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering - Part A, 2008, 14, 1751-1762.	3.1	41
197	Poly(vinylidene fluoride) Electrospun Fibers for Electroactive Scaffold Aplications: Influence of the Applied Voltage on Morphology and Polymorphism. , 2008, , .		1
198	Effect of the Cooling Rate on the Nucleation Kinetics of Poly(<scp>l</scp> -Lactic Acid) and Its Influence on Morphology. Macromolecules, 2007, 40, 7989-7997.	4.8	141

JOSé L GÃ³MEZ-RIBELLES

#	Article	IF	CITATIONS
199	Poly(ethyl methacrylate-co-hydroxyethyl acrylate) random co-polymers: Dielectric and dynamic-mechanical characterization. Journal of Non-Crystalline Solids, 2007, 353, 276-285.	3.1	8
200	Polymeric scaffolds with a double pore structure. Journal of Non-Crystalline Solids, 2007, 353, 1095-1100.	3.1	11
201	Dynamic Mechanical Relaxation of Poly(2â€Hydroxyethyl Acrylate)â€silica Nanocomposites Obtained by the Solâ€gel Method. Journal of Macromolecular Science - Physics, 2007, 46, 43-54.	1.0	17
202	Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 2007, 8, 2429-2436.	5.4	27
203	Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 2007, 93, 202-207.	0.5	62
204	Pore collapse during the fabrication process of rubber-like polymer scaffolds. Journal of Applied Polymer Science, 2007, 104, 1475-1481.	2.6	10
205	Influence of the substrate's hydrophilicity on thein vitro Schwann cells viability. Journal of Biomedical Materials Research - Part A, 2007, 83A, 463-470.	4.0	39
206	Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 266-275.	3.4	20
207	Dielectric and mechanical relaxation processes in methyl acrylate/tri-ethyleneglycol dimethacrylate copolymer networks. European Polymer Journal, 2007, 43, 1516-1529.	5.4	10
208	Polymer–silica nanocomposites prepared by sol–gel technique: Nanoindentation and tapping mode AFM studies. European Polymer Journal, 2007, 43, 2775-2783.	5.4	44
209	Nanodomains in a hydrophilic–hydrophobic IPN based on poly(2-hydroxyethyl acrylate) and poly(ethyl) Tj ETQq1	1 0.7843 5.4	14 rgBT /O
210	Characterisation of macroporous poly(methyl methacrylate) coated with plasma-polymerised poly(2-hydroxyethyl acrylate). European Polymer Journal, 2007, 43, 4552-4564.	5.4	35
211	Geometric distribution of Dynamically Accessible Volume in the Bond Fluctuation Model. Polymer, 2007, 48, 3361-3366.	3.8	4
212	Dielectric relaxation spectrum of poly (ε-caprolactone) networks hydrophilized by copolymerization with 2-hydroxyethyl acrylate. European Physical Journal E, 2007, 22, 293-302.	1.6	25
213	The kinetics of the structural relaxation process in PHEMA-silica nanocomposites based on an equation for the configurational entropy. European Physical Journal E, 2007, 24, 69-77.	1.6	13
214	Temperature modulated DSC study of the kinetics of free radical isothermal network polymerization. Journal of Thermal Analysis and Calorimetry, 2007, 90, 407-414.	3.6	16
215	Effect of Î ³ -irradiation on the structure of poly(ethyl acrylate-co-hydroxyethyl methacrylate) copolymer networks for biomedical applications. Journal of Materials Science: Materials in Medicine, 2007, 18, 693-698.	3.6	8
216	Effect of poly(L-lactide) surface topography on the morphology of in vitro cultured human articular chondrocytes. Journal of Materials Science: Materials in Medicine, 2007, 18, 1627-1632.	3.6	26

#	Article	IF	CITATIONS
217	Macroporous poly(methyl methacrylate) produced by phase separation during polymerisation in solution. Colloid and Polymer Science, 2007, 285, 753-760.	2.1	25
218	Plasma-induced polymerisation of hydrophilic coatings onto macroporous hydrophobic scaffolds. Polymer, 2007, 48, 2071-2078.	3.8	33
219	Dynamic-mechanical behavior of hydrophobic–hydrophilic interpenetrating copolymer networks. Polymer Engineering and Science, 2006, 46, 930-937.	3.1	6
220	Nanoindentation and tapping mode AFM study of phase separation in poly(ethyl) Tj ETQq0 0 0 rgBT /Overlock 10 1378-1383.	Tf 50 627 5.4	Td (acrylate 18
221	Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 2006, 27, 1003-1012.	11.4	59
222	The relationship between diffusion and dynamically accessible volume in polymer chain dynamics simulated with the bond fluctuation model. Polymer, 2006, 47, 4861-4865.	3.8	4
223	Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research - Part A, 2006, 79A, 495-502.	4.0	38
224	Structure and Properties of Poly(É>-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 2006, 207, 2195-2205.	2.2	27
225	A Definition of Dynamically Accessible Volume for Thermal Systems. Macromolecular Theory and Simulations, 2006, 15, 32-39.	1.4	9
226	On the role of inter- and intra-molecular potentials in the simulation of vitrification with the bond fluctuation model. Polymer, 2005, 46, 7463-7472.	3.8	10
227	Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer, 2005, 46, 8258-8265.	3.8	139
228	On the kinetics of melting and crystallization of poly(l-lactic acid) by TMDSC. Thermochimica Acta, 2005, 430, 201-210.	2.7	43
229	Enthalpy relaxation studies in polymethyl methacrylate networks with different crosslinking degrees. Polymer, 2005, 46, 491-504.	3.8	65
230	Influence of the chemical structure on the kinetics of the structural relaxation process of acrylate and methacrylate polymer networks. Colloid and Polymer Science, 2005, 283, 711-720.	2.1	25
231	Poly(2-hydroxyethyl acrylate) hydrogel confined in a hydrophobous porous matrix. Colloid and Polymer Science, 2005, 283, 681-690.	2.1	17
232	Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 2005, 16, 693-698.	3.6	44
233	Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science, 2005, 40, 4881-4887.	3.7	31
234	Influence of the cross-linking density on the main dielectric relaxation of poly(methyl acrylate) networks. Polymer Engineering and Science, 2005, 45, 1336-1342.	3.1	10

#	Article	IF	CITATIONS
235	Morphological Contributions to Glass Transition in Poly(l-lactic acid). Macromolecules, 2005, 38, 4712-4718.	4.8	137
236	Study of the Molecular Mobility in Polymers with the Thermally Stimulated Recovery Technique—A Review. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2005, 45, 99-124.	2.2	5
237	Main dielectric relaxation of poly(methyl acrylate)–polystyrene interpenetrating polymer networks. Journal of Non-Crystalline Solids, 2005, 351, 482-488.	3.1	4
238	Thermal transitions in α,ω-diamino terminated poly(oxypropylene)-block-poly(oxyethylene)-block-poly(oxypropylene) aqueous solutions and their epoxy networks. Journal of Non-Crystalline Solids, 2005, 351, 1254-1260.	3.1	14
239	Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 2005, 6, 3283-3290.	5.4	83
240	The structure of poly(ethyl acrylate-co-hydroxyethyl methacrylate) copolymer networks by segmental dynamics studies based on structural relaxation experiments. Polymer, 2004, 45, 2349-2355.	3.8	15
241	Entropic model for the relaxation in vitreous systems. Estimation of uncertainty in the calculation of the conformational relaxation times. Polymer, 2004, 45, 2743-2750.	3.8	9
242	Departure from the Vogel behaviour in the glass transition—thermally stimulated recovery, creep and dynamic mechanical analysis studies. Polymer, 2004, 45, 1007-1017.	3.8	51
243	Thermodynamical analysis of the hydrogel state in poly(2-hydroxyethyl acrylate). Polymer, 2004, 45, 6207-6217.	3.8	20
244	Thermal transitions in PHEA hydrogels by thermomechanical analysis. A comparison with DSC data. European Polymer Journal, 2004, 40, 329-334.	5.4	12
245	Relaxation Spectrum of Polymer Networks Formed from Butyl Acrylate and Methyl Methacrylate Monomeric Units. Macromolecules, 2004, 37, 6472-6479.	4.8	26
246	αâ^`β Splitting Region in the Dielectric Relaxation Spectrum of PEA-PEMA Sequential IPNs. Macromolecules, 2004, 37, 446-452.	4.8	8
247	Thermodynamics and statistical mechanics of multilayer adsorption. Journal of Chemical Physics, 2004, 121, 8524.	3.0	37
248	Viscoelastic Behavior of Poly(methyl methacrylate) Networks with Different Cross-Linking Degrees. Macromolecules, 2004, 37, 3735-3744.	4.8	103
249	Influence of the sample mass on the study of the glass transition and the structural relaxation by differential scanning calorimetry. Journal of Non-Crystalline Solids, 2004, 337, 68-77.	3.1	17
250	Porous poly(2-hydroxyethyl acrylate) hydrogels prepared by radical polymerisation with methanol as diluent. Polymer, 2004, 45, 8949-8955.	3.8	47
251	Analysis of the thermal environment inside the furnace of a dynamic mechanical analyser. Polymer Testing, 2003, 22, 471-481.	4.8	11
252	Thermal transitions of benzene in copolymers and interpenetrating polymer networks based on hydrophilic and hydrophobic components: Experimental evidence of hydrophobic interaction. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1713-1721.	2.1	12

#	Article	IF	CITATIONS
253	Mechanical Spectroscopy Studies on a Side-Chain Liquid Crystalline Polysiloxane. Comparison with Dielectric and DSC Data. Macromolecules, 2003, 36, 2816-2824.	4.8	18
254	Influence of the Hydrophobic Phase on the Thermal Transitions of Water Sorbed in a Polymer Hydrogel Based on Interpenetration of a Hydrophilic and a Hydrophobic Network. Macromolecules, 2003, 36, 860-866.	4.8	28
255	Study of the viscoelastic properties of PET by thermally stimulated recovery. Plastics, Rubber and Composites, 2003, 32, 281-290.	2.0	4
256	Segmental dynamics in poly(methyl acrylate)Âpoly(methyl methacrylate) sequential interpenetrating polymer networks: structural relaxation experiments. Journal of Physics Condensed Matter, 2003, 15, S1149-S1161.	1.8	14
257	Thermodynamics of water sorption in acrylic homonetworks and IPNs. Macromolecular Symposia, 2003, 200, 217-226.	0.7	4
258	The Dynamics of the Glass Transition in a Semicrystalline PET Studied by Mechanical and Dielectric Spectroscopic Methods. Defect and Diffusion Forum, 2002, 206-207, 131-134.	0.4	5
259	Glass transition in homogeneous and heterogeneous interpenetrating polymer networks and its relation to concentration fluctuations. Journal of Non-Crystalline Solids, 2002, 307-310, 731-737.	3.1	21
260	Thermal transitions of benzene in a poly(ethyl acrylate) network. Journal of Non-Crystalline Solids, 2002, 307-310, 750-757.	3.1	23
261	Phase heterogeneity in poly(methyl acrylate)-polystyrene sequential interpenetrating polymer networks studied by thermally stimulated recovery. Journal of Non-Crystalline Solids, 2002, 307-310, 758-764.	3.1	9
262	Dynamic mechanical properties of polycarbonate and acrylonitrile-butadiene-styrene copolymer blends. Journal of Applied Polymer Science, 2002, 83, 1507-1516.	2.6	21
263	Influence of experimental variables on thermally stimulated recovery results: analysis of simulations and real data on a polymeric system. Polymer International, 2002, 51, 434-442.	3.1	3
264	Molecular mobility in polymers studied with thermally stimulated recovery. II. Study of the glass transition of a semicrystalline PET and comparison with DSC and DMA results. Polymer, 2002, 43, 3627-3633.	3.8	39
265	Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate): a DSC study. Polymer, 2002, 43, 4111-4122.	3.8	146
266	Melting of benzene in a poly(ethyl acrylate) network studied by TMDSC. Polymer, 2002, 43, 6273-6279.	3.8	1
267	Transition from miscibility to immiscibility in blends of poly(methyl methacrylate) and styrene–acrylonitrile copolymers with varying copolymer composition: a DSC study. European Polymer Journal, 2002, 38, 597-605.	5.4	32
268	Molecular mobility in polymers studied with thermally stimulated recovery. Magyar Apróvad Közlemények, 2002, 70, 633-649.	1.4	10
269	Hydrophilic sponges based on poly(hydroxyethyl acrylate). Journal of Non-Crystalline Solids, 2001, 287, 130-134.	3.1	9
270	Miscibility of Poly(butyl acrylate)â^'Poly(butyl methacrylate) Sequential Interpenetrating Polymer Networks. Macromolecules, 2001, 34, 5525-5534.	4.8	33

#	Article	IF	CITATIONS
271	Dielectric and dynamic mechanical studies on homogeneous PBA/PBMA interpenetrating polymer networks. Macromolecular Symposia, 2001, 171, 151-162.	0.7	4
272	Molecular mobility in a thermoset as seen by TSR and DMA near Tg. Materials Research Innovations, 2001, 4, 170-178.	2.3	13
273	Interaction between water and polymer chains in poly(hydroxyethyl acrylate) hydrogels. Colloid and Polymer Science, 2001, 279, 323-330.	2.1	62
274	Structural relaxation in a polyester thermoset as seen by thermally stimulated recovery. Polymer, 2001, 42, 4173-4180.	3.8	18
275	Forced compatibility in poly(methyl acrylate)/poly(methyl methacrylate) sequential interpenetrating polymer networks. Polymer, 2001, 42, 10071-10075.	3.8	46
276	Porous poly(2-hydroxyethyl acrylate) hydrogels. Polymer, 2001, 42, 4667-4674.	3.8	74
277	BLENDS OF STYRENE-BUTADIENE-STYRENE TRIBLOCK COPOLYMER AND ISOTACTIC POLYPROPYLENE. REINFORCING EFFECT OF POLYPROPYLENE AT HIGH TEMPERATURES. Journal of Macromolecular Science - Physics, 2001, 40, 443-455.	1.0	1
278	Blends of styrene-butadiene-styrene triblock copolymer and isotactic polypropylene: morphology and thermomechanical properties. Polymer International, 2000, 49, 853-859.	3.1	24
279	Processing conditions and compatibilizing effects on reinforcement of polypropylene-liquid crystalline polymer blends. Polymer Composites, 2000, 21, 84-95.	4.6	12
280	The effect of kevlar fiber reinforcement on the curing, thermal, and dynamic-mechanical properties of an epoxy/anhydride system. Polymer Engineering and Science, 2000, 40, 1725-1735.	3.1	7
281	Morphology and thermomechanical properties of blends of styrene–butadiene–styrene triblock copolymer with polystyrene and syndiotactic polybutadiene homopolymers. European Polymer Journal, 2000, 36, 1893-1901.	5.4	8
282	Conformational motions in immiscible blends of polycarbonate and styrene-acrylonitrile copolymers. Polymer Engineering and Science, 1999, 39, 688-698.	3.1	9
283	Influence of the structure of soft and stiff chain fragments on properties of segmented polyurethanes. I. Phase morphology. Polymer Engineering and Science, 1999, 39, 1534-1540.	3.1	7
284	The length of cooperativity at the glass transition in poly(vinyl acetate) from the modeling of the structural relaxation process. Polymer, 1999, 40, 183-192.	3.8	46
285	Conformational mobility in a polymer with mesogenic side groups. Polymer, 1999, 40, 6545-6556.	3.8	14
286	Calorimetric study of the conformational relaxation times in polystyrene. Colloid and Polymer Science, 1999, 277, 1033-1040.	2.1	9
287	Molecular mobility and hydration properties of segmented polyurethanes with varying structure of soft- and hard-chain segments. Journal of Applied Polymer Science, 1999, 71, 1209-1221.	2.6	58
288	Thermal and mechanical characterization of amine-epoxy/Kevlar fibre composites. Polymer International, 1999, 48, 1269-1276.	3.1	4

#	Article	IF	CITATIONS
289	Poly(methyl acrylate)/poly(hydroxyethyl acrylate) sequential interpenetrating polymer networks. Miscibility and water sorption behavior. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1587-1599.	2.1	40
290	Anhydride and diamine epoxy-Kevlar composites: thermal and dynamic-mechanical properties. Polymers for Advanced Technologies, 1999, 10, 615-619.	3.2	1
291	Thermal characterization of the glass transition of heterocyclic polymer networks. Journal of Non-Crystalline Solids, 1999, 244, 172-184.	3.1	7
292	Glass Transition and Structural Relaxation in Polystyrene/Poly(2,6-dimethyl-1,4-phenylene oxide) Miscible Blends. Macromolecules, 1999, 32, 4430-4438.	4.8	41
293	Molecular motions in a polycarbonate composite as studied by thermally stimulated recovery and dynamic mechanical analysis. Macromolecular Symposia, 1999, 148, 437-454.	0.7	13
294	The application of a new configurational entropy model to the structural relaxation in an epoxy resin. Polymer, 1998, 39, 3801-3807.	3.8	31
295	Swelling and thermally stimulated depolarization currents in hydrogels formed by interpenetrating polymer networks. Journal of Non-Crystalline Solids, 1998, 235-237, 692-696.	3.1	25
296	PMMA/PPTA Microcomposites. Macromolecules, 1997, 30, 3612-3619.	4.8	10
297	Dielectric relaxation spectroscopy of polyethylene terephthalate (PET) films. Journal Physics D: Applied Physics, 1997, 30, 1551-1560.	2.8	117
298	Structural relaxation of glass-forming polymers based on an equation for configurational entropy: 3. On the states attained at infinite time in the structural relaxation process. Results on poly(ether) Tj ETQq0 0 0 rg	gBT3/@verlo	აc lai 0 Tf 50 3
299	Structural relaxation of glass-forming polymers based on an equation for configurational entropy, 4. Structural relaxation in styrene-acrylonitrile copolymer. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2201-2217.	2.1	46
300	Structural Relaxation in Polystyrene and Some Polystyrene Derivatives. Macromolecules, 1996, 29, 7976-7988.	4.8	50
301	Polymer-water interactions in poly(hydroxyethyl acrylate) hydrogels studied by dielectric, calorimetric and sorption isotherm measurements. Polymer Gels and Networks, 1995, 3, 445-469.	0.6	54
302	Structural Relaxation of Glass-Forming Polymers Based on an Equation for Configurational Entropy. 2. Structural Relaxation in Polymethacrylates. Macromolecules, 1995, 28, 5878-5885.	4.8	45
303	Structural Relaxation of Glass-Forming Polymers Based on an Equation for Configurational Entropy. 1. DSC Experiments on Polycarbonate. Macromolecules, 1995, 28, 5867-5877.	4.8	83
304	Depolarization thermocurrent studies in poly(hydroxyethyl acrylate)/water hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1001-1008.	2.1	48
305	Dielectric relaxation spectroscopy in PHEA hydrogels. Journal of Non-Crystalline Solids, 1994, 172-174, 1041-1046.	3.1	32
306	Dielectric Relaxation Phenomena in Poly(glutamic acid esters). 1. Glass Transition and Main Dielectric Relaxation in Poly(.gamman-alkyl L-glutamate). Macromolecules, 1994, 27, 5004-5015.	4.8	13

#	Article	IF	CITATIONS
307	Structural relaxation in poly(ethyl methacrylate)/nylon fibre composites. Polymer, 1993, 34, 3837-3842.	3.8	7
308	Side-chain liquid crystalline poly(N-maleimides). 5. Dielectric relaxation behavior of liquid crystalline side-chain and amorphous poly(N-maleimides). A comparative structural study. Macromolecules, 1993, 26, 155-166.	4.8	32
309	On the dynamic mechanical behavior of poly(ethyl methacrylate) reinforced with kevlar fibers. Journal of Applied Polymer Science, 1991, 42, 1647-1657.	2.6	19
310	Title is missing!. Die Makromolekulare Chemie, 1991, 192, 2141-2161.	1.1	68
311	Side-chain crystallization and mobility of poly(γ-stearyl-l-glutamate). Polymer, 1991, 32, 1642-1646.	3.8	10
312	On the dynamic mechanical behavior of poly(methyl methacrylate) reinforced with Kevlar fibers. Polymer Composites, 1991, 12, 428-435.	4.6	11
313	A phenomenological study of the structural relaxation of poly(methyl methacrylate). Polymer, 1990, 31, 223-230.	3.8	72
314	Study of structural relaxation by dynamic-mechanical methods in poly(methyl methacrylate). Polymer, 1989, 30, 1433-1438.	3.8	50
315	Dielectric relaxation study of low-density polyethylene by thermally stimulated depolarization currents and thermal sampling. Journal of Applied Polymer Science, 1989, 37, 1645-1653.	2.6	5
316	Dielectric relaxations in poly(methyl acrylate), poly(ethyl acrylate), and poly(butyl acrylate). Journal of Applied Polymer Science, 1989, 38, 1145-1157.	2.6	30
317	Structural relaxation of poly(\hat{I}^3 -benzyl-l-glutamate). Polymer, 1989, 30, 849-855.	3.8	13
318	Dynamic mechanical behaviour of poly(methyl acrylate) reinforced by poly(ethylene terephthalate) fibres. Journal of Materials Science Letters, 1989, 8, 263-264.	0.5	1
319	Dielectric and mechanical relaxations in cycloaliphatic polyformal networks. Macromolecules, 1989, 22, 1821-1826.	4.8	4
320	Physical model explaining the effect of physical ageing on dynamic mechanical and calorimetric properties of poly(methyl methacrylate). Makromolekulare Chemie Macromolecular Symposia, 1989, 27, 289-297.	0.6	11
321	Dielectric relaxations in poly(hydroxyethyl acrylate): influence of the absorbed water. Polymer, 1988, 29, 1124-1127.	3.8	24
322	Glass transition and physical ageing in plasticized poly(vinyl chloride). Polymer, 1987, 28, 2262-2266.	3.8	56
323	Influence of physical ageing on the ? dielectric relaxation of poly(methyl acrylaie). Polymer Bulletin, 1985, 14, 45.	3.3	6
324	The β dielectric relaxation in some methacrylate polymers. Journal of Polymer Science, Polymer Physics Edition, 1985, 23, 1297-1307.	1.0	57

#	Article	IF	CITATIONS
325	Application of the method of brather for the determination of complex dielectric permittivity from measurements of isothermal polarization current. Journal of Polymer Science, Polymer Physics Edition, 1985, 23, 1505-1511.	1.0	5
326	Dielectric and mechanical-dynamical studies on poly(cyclohexyl methacrylate). Polymer, 1985, 26, 1849-1854.	3.8	28
327	Determination of the apparent activation energy of dielectric relaxation phenomena by means of the representation of ε―as a function of T at constant frequency. Journal of Macromolecular Science - Physics, 1984, 23, 255-269.	1.0	7
328	Effect of the cooling rate in the formation of glass on the $\hat{I}\pm$ and \hat{I}^2 relaxations of some amorphous polymers. Polymer Engineering and Science, 1984, 24, 1202-1204.	3.1	18
329	Influence of the thermal history on dielectric properties of poly(vinyl chloride). Polymer Engineering and Science, 1982, 22, 845-848.	3.1	14