
Graeme S Cottrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1963673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CaV2.2 (N-type) voltage-gated calcium channels are activated by SUMOylation pathways. Cell Calcium, 2021, 93, 102326.	2.4	4
2	Omegaâ€3 polyunsaturated fatty acids and hypertension: a review of vasodilatory mechanisms of docosahexaenoic acid and eicosapentaenoic acid. British Journal of Pharmacology, 2021, 178, 860-877.	5.4	47
3	The two-cell model of glucose metabolism: a hypothesis of schizophrenia. Molecular Psychiatry, 2021, 26, 1738-1747.	7.9	8
4	Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells. Stem Cell Research and Therapy, 2021, 12, 31.	5.5	32
5	Time-Dependent Reduction of Calcium Oscillations in Adipose-Derived Stem Cells Differentiating towards Adipogenic and Osteogenic Lineage. Biomolecules, 2021, 11, 1400.	4.0	4
6	Biophysics is reshaping our perception of the epigenome: from changing the landscape of how we study DNA-level epigenetic marks to enabling high-throughput applications. Biophysical Reports, 2021, 1, 100028.	1.2	0
7	Rethinking the Citric Acid Cycle: Connecting Pyruvate Carboxylase and Citrate Synthase to the Flow of Energy and Material. International Journal of Molecular Sciences, 2021, 22, 604.	4.1	21
8	Profiling the eicosanoid networks that underlie the anti―and proâ€ŧhrombotic effects of aspirin. FASEB Journal, 2020, 34, 10027-10040.	0.5	10
9	Electrical Stimulation of Adipose-Derived Stem Cells in 3D Nanofibrillar Cellulose Increases Their Osteogenic Potential. Biomolecules, 2020, 10, 1696.	4.0	15
10	Astrocytes and neurons communicate via a monocarboxylic acid shuttle. AIMS Neuroscience, 2020, 7, 94-106.	2.3	16
11	CACHD1: A new activity-modifying protein for voltage-gated calcium channels. Channels, 2019, 13, 120-123.	2.8	12
12	Toll-like receptor 4 and protease-activated receptor 2 in physiology and pathophysiology of the nervous system: more than just receptor cooperation?. Neural Regeneration Research, 2019, 14, 1196.	3.0	18
13	CACHD1 is an α2δ-Like Protein That Modulates Ca _V 3 Voltage-Gated Calcium Channel Activity. Journal of Neuroscience, 2018, 38, 9186-9201.	3.6	36
14	Proton Transport Chains in Glucose Metabolism: Mind the Proton. Frontiers in Neuroscience, 2018, 12, 404.	2.8	18
15	Measuring Lactase Enzymatic Activity in the Teaching Lab. Journal of Visualized Experiments, 2018, , .	0.3	6
16	CGRP Receptor Signalling Pathways. Handbook of Experimental Pharmacology, 2018, 255, 37-64.	1.8	28
17	Characterisation of the vasodilation effects of DHA and EPA, n-3 PUFAs (fish oils), in rat aorta and mesenteric resistance arteries. PLoS ONE, 2018, 13, e0192484.	2.5	35
18	Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization. Science Signaling, 2017, 10, .	3.6	71

GRAEME S COTTRELL

#	Article	IF	CITATIONS
19	The Role of Ubiquitination and Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate in the Degradation of the Adrenomedullin Type I Receptor. Scientific Reports, 2017, 7, 12389.	3.3	4
20	Development and Characterisation of a Novel NF- <i>κ</i> B Reporter Cell Line for Investigation of Neuroinflammation. Mediators of Inflammation, 2017, 2017, 1-10.	3.0	14
21	Biased signalling is an essential feature of TLR4 in glioma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 3084-3095.	4.1	25
22	G Protein-Coupled Receptors: What a Difference a â€~Partner' Makes. International Journal of Molecular Sciences, 2014, 15, 1112-1142.	4.1	24
23	Serine proteases and proteaseâ€activated receptor 2 mediate the proinflammatory and algesic actions of diverse stimulants. British Journal of Pharmacology, 2014, 171, 3814-3826.	5.4	29
24	Aminopeptidase P1. , 2013, , 1525-1528.		1
25	The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts. Journal of Biological Chemistry, 2013, 288, 22942-22960.	3.4	78
26	The TGR5 receptor mediates bile acid–induced itch and analgesia. Journal of Clinical Investigation, 2013, 123, 1513-1530.	8.2	301
27	Localization of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) in human gastrointestinal tract. Peptides, 2012, 35, 202-211.	2.4	29
28	Statins and Selective Inhibition of Rho Kinase Protect Small Conductance Calcium-Activated Potassium Channel Function (KCa2.3) in Cerebral Arteries. PLoS ONE, 2012, 7, e46735.	2.5	16
29	Endothelinâ€converting enzymeâ€1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones. Journal of Physiology, 2011, 589, 5213-5230.	2.9	31
30	Protein phosphatase 2A mediates resensitization of the neurokinin 1 receptor. American Journal of Physiology - Cell Physiology, 2011, 301, C780-C791.	4.6	24
31	Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterology and Motility, 2010, 22, 814-e228.	3.0	185
32	Pungent General Anesthetics Activate Transient Receptor Potential-A1 to Produce Hyperalgesia and Neurogenic Bronchoconstriction. Anesthesiology, 2010, 112, 1452-1463.	2.5	58
33	214 Protein Phosphatase 2a (PP2A) and β-Arrestin1 Mediate Recycling-Independent Resensitization of the Neurokinin 1 Receptor (NK1R). Gastroenterology, 2010, 138, S-40.	1.3	0
34	216 The Bile Acid Receptor GpBAR1 is Regulated by β-Arrestin-Independent Mechanisms and Transactivates the Epidermal Growth Factor Receptor Within Plasma Membrane Microdomains. Gastroenterology, 2010, 138, S-41.	1.3	0
35	Trafficking and Signaling of G Protein-Coupled Receptors in the Nervous System: Implications for Disease and Therapy. CNS and Neurological Disorders - Drug Targets, 2010, 9, 539-556.	1.4	17
36	Endosomes: A legitimate platform for the signaling train. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17615-17622.	7.1	317

GRAEME S COTTRELL

#	Article	IF	CITATIONS
37	Endosomal Deubiquitinating Enzymes Control Ubiquitination and Down-regulation of Protease-activated Receptor 2. Journal of Biological Chemistry, 2009, 284, 28453-28466.	3.4	71
38	Endosomal Endothelin-converting Enzyme-1. Journal of Biological Chemistry, 2009, 284, 22411-22425.	3.4	56
39	Protein kinase D isoforms are expressed in rat and mouse primary sensory neurons and are activated by agonists of proteaseâ€activated receptor 2. Journal of Comparative Neurology, 2009, 516, 141-156.	1.6	29
40	Endothelinâ€converting enzyme 1 promotes reâ€sensitization of neurokinin 1 receptorâ€dependent neurogenic inflammation. British Journal of Pharmacology, 2009, 156, 730-739.	5.4	32
41	699 The Role of Endothelin Converting Enzyme 1 (ECE1) in Intestinal Inflammation. Gastroenterology, 2009, 136, A-110.	1.3	Ο
42	993 Expression and Function of the Bile Acid Receptor GpBAR1 in the Enteric Nervous System. Gastroenterology, 2009, 136, A-153.	1.3	0
43	Resolvin: Endogenous â€~off switch' that reverses inflammation-induced microvascular fluid leak. Journal of the American College of Surgeons, 2008, 207, S100.	0.5	Ο
44	386 Endothelin Converting Enzyme-1 (ECE-1) Degrades Substance P (SP) in Endosomes and Regulates Mitogenic Signaling of the Neurokinin 1 Receptor (NK1R). Gastroenterology, 2008, 134, A-52.	1.3	0
45	387 Endosomal Deubiquitinating Enzymes (DUBS) Control Ubiquitination and Post-Endocytic Sorting of Protease-Activated Receptor 2 (PAR2). Gastroenterology, 2008, 134, A-52.	1.3	Ο
46	T1438 Endosomal Endothelin Converting Enzyme-1 (ECE-1) Controls Resensitization the Proinflammatory and Nociceptive Effects of Substance P (SP) and Calcitonin Gene-Related Peptide (CGRP). Gastroenterology, 2008, 134, A-555-A-556.	1.3	0
47	Endothelin-Converting Enzyme-1 Degrades Internalized Somatostatin-14. Endocrinology, 2008, 149, 2200-2207.	2.8	33
48	Hepatocyte Growth Factor-regulated Tyrosine Kinase Substrate (HRS) Mediates Post-endocytic Trafficking of Protease-activated Receptor 2 and Calcitonin Receptor-like Receptor. Journal of Biological Chemistry, 2007, 282, 29646-29657.	3.4	60
49	Agonists of protease-activated receptors 1 and 2 stimulate electrolyte secretion from mouse gallbladder. American Journal of Physiology - Renal Physiology, 2007, 293, G335-G346.	3.4	12
50	Endothelin-converting enzyme-1 regulates endosomal sorting of calcitonin receptor-like receptor and β-arrestins. Journal of Cell Biology, 2007, 179, 981-997.	5.2	91
51	Agonist-Induced Endocytosis of Rat Somatostatin Receptor 1. Endocrinology, 2007, 148, 1050-1058.	2.8	14
52	Post-endocytic Sorting of Calcitonin Receptor-like Receptor and Receptor Activity-modifying Protein 1. Journal of Biological Chemistry, 2007, 282, 12260-12271.	3.4	66
53	4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13519-13524.	7.1	655
54	Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11838-11843.	7.1	70

GRAEME S COTTRELL

#	Article	IF	CITATIONS
55	Protease-Activated Receptor 2, Dipeptidyl Peptidase I, and Proteases Mediate Clostridium difficile Toxin A Enteritis. Gastroenterology, 2007, 132, 2422-2437.	1.3	47
56	Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. Journal of Physiology, 2007, 578, 715-733.	2.9	338
57	Substance P released by TRPV1-expressing neurons produces reactive oxygen species that mediate ethanol-induced gastric injury. Free Radical Biology and Medicine, 2007, 43, 581-589.	2.9	77
58	Trypsin IV or Mesotrypsin and p23 Cleave Protease-activated Receptors 1 and 2 to Induce Inflammation and Hyperalgesia. Journal of Biological Chemistry, 2007, 282, 26089-26100.	3.4	92
59	Role for protease activity in visceral pain in irritable bowel syndrome. Journal of Clinical Investigation, 2007, 117, 636-647.	8.2	490
60	Protease-activated receptor 2 sensitizes TRPV1 by protein kinase CÉ and A-dependent mechanisms in rats and mice. Journal of Physiology, 2006, 575, 555-571.	2.9	243
61	Protease-Activated Receptors in Gastrointestinal Function and Disease. , 2006, , 1-31.		Ο
62	Ubiquitin-dependent Down-regulation of the Neurokinin-1 Receptor. Journal of Biological Chemistry, 2006, 281, 27773-27783.	3.4	58
63	Proteinase-activated Receptors, Targets for Kallikrein Signaling. Journal of Biological Chemistry, 2006, 281, 32095-32112.	3.4	217
64	Localization of calcitonin receptor-like receptor and receptor activity modifying protein 1 in enteric neurons, dorsal root ganglia, and the spinal cord of the rat. Journal of Comparative Neurology, 2005, 490, 239-255.	1.6	100
65	Mast Cell Tryptase Controls Paracellular Permeability of the Intestine. Journal of Biological Chemistry, 2005, 280, 31936-31948.	3.4	286
66	<i>Pseudomonas aeruginosa</i> Elastase Disables Proteinase-Activated Receptor 2 in Respiratory Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 411-419.	2.9	120
67	c-Cbl Mediates Ubiquitination, Degradation, and Down-regulation of Human Protease-activated Receptor 2. Journal of Biological Chemistry, 2005, 280, 16076-16087.	3.4	119
68	Trypsin IV, a Novel Agonist of Protease-activated Receptors 2 and 4. Journal of Biological Chemistry, 2004, 279, 13532-13539.	3.4	155
69	Recycling and Resensitization of the Neurokinin 1 Receptor. Journal of Biological Chemistry, 2004, 279, 30670-30679.	3.4	74
70	Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology, 2004, 126, 693-702.	1.3	1,246
71	Protease-Activated Receptor 2 Sensitizes the Capsaicin Receptor Transient Receptor Potential Vanilloid Receptor 1 to Induce Hyperalgesia. Journal of Neuroscience, 2004, 24, 4300-4312.	3.6	381
72	Mast cell tryptase and proteinaseâ€activated receptor 2 induce hyperexcitability of guineaâ€pig submucosal neurons. Journal of Physiology, 2003, 547, 531-542.	2.9	151

#	Article	IF	CITATIONS
73	Protease-activated receptors: the role of cell-surface proteolysis in signalling. Essays in Biochemistry, 2002, 38, 169-183.	4.7	42