

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1963671/publications.pdf Version: 2024-02-01

DELLI

#	Article	IF	CITATIONS
1	Aggregation-Induced Emission Luminogens for Cell Death Research. ACS Bio & Med Chem Au, 2022, 2, 236-257.	3.7	14
2	In Vivo Biodistribution, Clearance, and Biocompatibility of Multiple Carbon Dots Containing Nanoparticles for Biomedical Application. Pharmaceutics, 2021, 13, 1872.	4.5	10
3	Physicalâ€; chemicalâ€; and biologicalâ€responsive nanomedicine for cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1581.	6.1	44
4	Nanoencapsulation of Organic Phase Change Material in Water via Coacervation Using Amphoteric Copolymer. Industrial & Engineering Chemistry Research, 2019, 58, 21080-21088.	3.7	18
5	Effective gene delivery of shBMP-9 using polyethyleneimine-based core–shell nanoparticles in an animal model of insulin resistance. Nanoscale, 2019, 11, 2008-2016.	5.6	18
6	Aqueous Synthesis of Multi arbon Dot Crossâ€Linked Polyethyleneimine Particles with Enhanced Photoluminescent Properties. Macromolecular Rapid Communications, 2019, 40, e1800869.	3.9	9
7	<p>Confined growth of multiple gold nanorices in dual-mesoporous silica nanospheres for improved computed tomography imaging and photothermal therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 1519-1532.	6.7	8
8	Facile synthesis of organosilica-capped mesoporous silica nanocarriers with selective redox-triggered drug release properties for safe tumor chemotherapy. Biomaterials Science, 2019, 7, 1825-1832.	5.4	28
9	Amphiphilic core shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells. International Journal of Nanomedicine, 2016, 11, 2785.	6.7	8
10	Green Synthesis of Smart Metal/Polymer Nanocomposite Particles and Their Tuneable Catalytic Activities. Polymers, 2016, 8, 105.	4.5	43
11	Amphiphilic Core–Shell Nanocomposite Particles for Enhanced Magnetic Resonance Imaging. Particle and Particle Systems Characterization, 2016, 33, 756-763.	2.3	6
12	Laccase-mediated formation of mesoporous silica nanoparticle based redox stimuli-responsive hybrid nanogels as a multifunctional nanotheranostic agent. Nanoscale, 2016, 8, 17241-17249.	5.6	42
13	Synthesis of dual stimuli-responsive amphiphilic particles through controlled semi-batch emulsion polymerization. Polymer, 2016, 106, 294-302.	3.8	5
14	Influence of temperature on the formation and encapsulation of gold nanoparticles using a temperature-sensitive template. Data in Brief, 2015, 5, 434-438.	1.0	11
15	Design and synthesis of amphiphilic core–shell nanoparticles with temperature sensitive-shell for controllable intracellular uptake. Journal of Controlled Release, 2015, 213, e85-e86.	9.9	1
16	Facile synthesis of gold/polymer nanocomposite particles using polymeric amine-based particles as dual reductants and templates. Polymer, 2015, 76, 271-279.	3.8	24
17	Polyethyleneimine-Based Nanocarriers for Gene Delivery. Current Pharmaceutical Design, 2015, 21, 6140-6156.	1.9	84
18	Synthesis and Characterization of Solvent-Invertible Amphiphilic Hollow Particles. Langmuir, 2013, 29, 7583-7590.	3.5	11

#	Article	IF	CITATIONS
19	Amphiphilic Core–Shell Nanoparticles Containing Hairy Polyethyleneimine Shells as Effective Nanocarriers for Gene and siRNA Delivery. Regenerative Medicine, Artificial Cells and Nanomedicine, 2013, , 429-447.	0.1	0
20	pH-induced formation of various hierarchical structures from amphiphilic core–shell nanotubes. RSC Advances, 2012, 2, 1303.	3.6	4
21	Polyethyleneimine-Based Core-Shell Nanogels: A Promising siRNA Carrier for Argininosuccinate Synthetase mRNA Knockdown in HeLa Cells. Journal of Controlled Release, 2012, 158, 123-130.	9.9	66
22	Polyethylenimine-Based Amphiphilic Core–Shell Nanoparticles: Study of Gene Delivery and Intracellular Trafficking. Biointerphases, 2012, 7, 16.	1.6	30
23	Amphiphilic polymeric particles with core–shell nanostructures: emulsion-based syntheses and potential applications. Colloid and Polymer Science, 2010, 288, 1503-1523.	2.1	89
24	Mechanistic study of the formation of amphiphilic core–shell particles by grafting methyl methacrylate from polyethylenimine through emulsion polymerization. Polymer, 2010, 51, 3512-3519.	3.8	29
25	Hydrothermal Microemulsion Synthesis of Oxidatively Stable Cobalt Nanocrystals Encapsulated in Surfactant/Polymer Complex Shells. Langmuir, 2010, 26, 6009-6014.	3.5	24
26	Formation of nanostructured materials using inexpensive hollow particles of amphiphilic graft copolymers as building blocks: 1. insight into the mechanism of nanotube formation. Soft Matter, 2009, 5, 4914.	2.7	13
27	Design and Synthesis of Novel Magnetic Coreâ^'Shell Polymeric Particles. Langmuir, 2008, 24, 1801-1807.	3.5	74
28	Facile Route to Enzyme Immobilization: Coreâ^'Shell Nanoenzyme Particles Consisting of Well-Defined Poly(methyl methacrylate) Cores and Cellulase Shells. Langmuir, 2008, 24, 11036-11042.	3.5	64
29	Smart Coatings. ACS Symposium Series, 2007, , 15-26.	0.5	0
30	Amine-containing core-shell nanoparticles as potential drug carriers for intracellular delivery. Journal of Biomedical Materials Research - Part A, 2007, 80A, 184-193.	4.0	43
31	Synthesis of Wellâ€Defined Amphiphilic Core–Shell Particles Containing Amineâ€Rich Shells. Macromolecular Rapid Communications, 2007, 28, 2267-2271.	3.9	19
32	Surfactant Effect on Synthesis of Nanocrystalline LaxSr1-xMnO3by Hydrothermal Method. Acta Physica Polonica A, 2007, 111, 165-171.	0.5	10
33	Self-Assembled Polystyrene-block-poly(ethylene oxide) Micelle Morphologies in Solution. Macromolecules, 2006, 39, 4880-4888.	4.8	241
34	Formation of Nanostructured Materials via Coalescence of Amphiphilic Hollow Particles. Journal of the American Chemical Society, 2006, 128, 2168-2169.	13.7	27
35	Intracellular uptake and release of poly(ethyleneimine)-co-poly(methyl methacrylate) nanoparticle/pDNA complexes for gene delivery. International Journal of Pharmaceutics, 2006, 311, 209-214.	5.2	49
36	Novel Core-Shell Nanoparticles and Their Application in High-Capacity Immobilization of Enzymes. Applied Biochemistry and Biotechnology, 2006, 135, 229-246.	2.9	27

#	Article	IF	CITATIONS
37	Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles. Journal of Applied Polymer Science, 2006, 102, 1787-1793.	2.6	106
38	A novel method to prepare chitosan powder and its application in cellulase immobilization. Journal of Chemical Technology and Biotechnology, 2006, 81, 189-195.	3.2	45
39	Efficient gene delivery using a novel coreâ€shell nanoparticle and HMGB1 system. FASEB Journal, 2006, 20, A526.	0.5	0
40	A simple self-assembly method for colloidal photonic crystals with a large area. Journal of Colloid and Interface Science, 2005, 286, 573-578.	9.4	18
41	Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer, 2005, 46, 10538-10543.	3.8	164
42	Novel Synthesis and Properties of Smart Core-Shell Microgels. Macromolecular Symposia, 2005, 226, 177-186.	0.7	21
43	Amphiphilic Coreâ^'Shell Nanoparticles with Poly(ethylenimine) Shells as Potential Gene Delivery Carriers. Bioconjugate Chemistry, 2005, 16, 139-146.	3.6	133
44	POLYELECTROLYTE NETWORK-SURFACTANT COMPLEXES WITH SHAPE MEMORY EFFECT. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 375-383.	3.4	0
45	New Route to Smart Core-Shell Polymeric Microgels: Synthesis and Properties. Macromolecular Rapid Communications, 2004, 25, 1819-1823.	3.9	73
46	Magnetic and conducting Fe3O4-polypyrrole nanoparticles with core-shell structure. Polymer International, 2003, 52, 1182-1187.	3.1	155
47	Synthesis and characterization of poly(methyl methacrylate)/casein nanoparticles with a well-defined core-shell structure. Journal of Polymer Science Part A, 2003, 41, 3346-3353.	2.3	52
48	Magnetic and conductive Fe3O4–polyaniline nanoparticles with core–shell structure. Synthetic Metals, 2003, 139, 295-301.	3.9	232
49	Preparation of Latexes with Poly(Methyl Methacrylate) Cores and Hydrophilic Polymer Shells Containing Amino Groups. Journal of Dispersion Science and Technology, 2003, 24, 607-613.	2.4	18
50	New Route to Amphiphilic Coreâ^'Shell Polymer Nanospheres: Graft Copolymerization of Methyl Methacrylate from Water-Soluble Polymer Chains Containing Amino Groups. Langmuir, 2002, 18, 8641-8646.	3.5	146
51	Magnetic and conducting Fe 3 O 4 –cross-linked polyaniline nanoparticles with core–shell structure. Polymer, 2002, 43, 2179-2184.	3.8	260
52	Carbon nanotube–polyaniline hybrid materials. European Polymer Journal, 2002, 38, 2497-2501.	5.4	181
53	A Novel Surface Functionalization Method for Producing Carboxyl-Functional Poly(methyl styrene) Latexes. ACS Symposium Series, 2001, , 293-306.	0.5	0
54	Synthesis of N,N-dimethyl-2-amino-1,2-dicyclohexylethanol and its application in the enantioselective conjugate addition of diethylzinc to enones: a convenient upgrade of the chiral ligand via hydrogenation. Tetrahedron: Asymmetry, 2001, 12, 2301-2304.	1.8	18

#	Article	IF	CITATIONS
55	Preparation and characterization of magnetic amphiphilic polymer microspheres. Journal of Applied Polymer Science, 2001, 79, 1847-1851.	2.6	24
56	A Convenient Synthesis of α,β-Acetylenic Ketones. Journal of Organic Chemistry, 2001, 66, 4087-4090.	3.2	28
57	Copper-mediated graft copolymerization of methyl methacrylate onto casein. Macromolecular Symposia, 2000, 151, 605-610.	0.7	11
58	Characterization of Fe 3 O 4 /poly(styrene- co - N -isopropylacrylamide) magnetic particles with temperature sensitivity. Colloid and Polymer Science, 2000, 278, 459-463.	2.1	16
59	Surface Functionalization of Polymer Latex Particles:Â 4. Tailor-Making of Aldehyde-Functional Poly(methylstyrene) Latexes in an Emulsifier-Free System. Langmuir, 2000, 16, 4141-4147.	3.5	27
60	Functionalization of poly(methylstyrene) latex particles in an emulsifier-free system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 153, 363-366.	4.7	3
61	Oxidation of alkynes by cobalt acetate bromide: a new mode of action for an important industrial catalyst. Journal of Molecular Catalysis A, 1999, 145, 111-120.	4.8	17
62	Formation of highly monodispersed emulsifier-free cationic poly(methylstyrene) latex particles. Journal of Polymer Science Part A, 1999, 37, 2069-2074.	2.3	24
63	Surface functionalization of polymer latex particles. III. A convenient method of producing ultrafine poly(methylstyrene) latexes with aldehyde groups on the surface. Journal of Polymer Science Part A, 1998, 36, 2103-2109.	2.3	15
64	Selective oxidation of styrenes under oxygen catalyzed by cobalt chloride. Applied Catalysis A: General, 1997, 150, 221-229.	4.3	53
65	Surface functionalization of polymer latex particles. I. Catalytic oxidation of poly(methylstyrene) latex particles in the presence of an anionic surfactant. Journal of Polymer Science Part A, 1997, 35, 1863-1872.	2.3	14
66	Surface functionalization of polymer latex particles. II. Catalytic oxidation of poly(methylstyrene) latexes in the presence of cetyltrimethylammonium bromide. Journal of Polymer Science Part A, 1997, 35, 3585-3593.	2.3	8
67	Cobalt-Catalyzed Carbonylation of Benzyl Halides Using Polyethylene Glycols as Phase-Transfer Catalysts. Organometallics, 1996, 15, 3222-3231.	2.3	43
68	Cobalt(II) catalyzed oxidation of 2-substituted 1,3-dioxolanes with molecular oxygen. Canadian Journal of Chemistry, 1993, 71, 84-89.	1.1	18
69	Wood pulp washing 2. Displacement washing of aqueous lignin from model beds with cationic polymer solutions. Colloids and Surfaces, 1992, 64, 223-234.	0.9	6
70	Cobalt-catalyzed oxidation of ethers using oxygen. Journal of Molecular Catalysis, 1992, 72, 143-152.	1.2	39
71	Wood pulp washing 1. Complex formation between kraft lignin and cationic polymers. Colloids and Surfaces, 1992, 64, 217-222.	0.9	15
72	Mild cobalt chloride-catalyzed benzylic oxidation under neutral conditions. Journal of Molecular Catalysis, 1990, 61, 51-54.	1.2	29

#	Article	IF	CITATIONS
73	Poly(ethylene glycol) promoted reactions of vinylic dibromides. Dehydrohalogenation and palladium(0)-catalyzed formal oxidative homologation. Journal of Organic Chemistry, 1986, 51, 4354-4356.	3.2	52