Tian-Fu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1962716/publications.pdf

Version: 2024-02-01

29157 28274 11,400 127 55 104 citations h-index g-index papers 135 135 135 10258 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	38.1	1,792
2	Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 2015, 6, 5979.	12.8	540
3	A Series of Highly Stable Mesoporous Metalloporphyrin Fe-MOFs. Journal of the American Chemical Society, 2014, 136, 13983-13986.	13.7	363
4	Topology-Guided Design and Syntheses of Highly Stable Mesoporous Porphyrinic Zirconium Metal–Organic Frameworks with High Surface Area. Journal of the American Chemical Society, 2015, 137, 413-419.	13.7	352
5	Pore Surface Engineering with Controlled Loadings of Functional Groups via Click Chemistry in Highly Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 14690-14693.	13.7	351
6	Highly Selective CO ₂ Electroreduction to CH ₄ by Inâ€Situ Generated Cu ₂ O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie - International Edition, 2020, 59, 23641-23648.	13.8	335
7	Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 2014, 5, 5723.	12.8	332
8	Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 3177-3180.	13.7	323
9	An Ultraâ€Robust and Crystalline Redeemable Hydrogenâ€Bonded Organic Framework for Synergistic Chemoâ€Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 7691-7696.	13.8	303
10	Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO ₂ Photoreduction via Rational Design of Coordination Spheres on Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 12515-12523.	13.7	289
11	Fluorescent Metal–Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater. Inorganic Chemistry, 2018, 57, 1060-1065.	4.0	270
12	A Highly Stable Zeotype Mesoporous Zirconium Metal–Organic Framework with Ultralarge Pores. Angewandte Chemie - International Edition, 2015, 54, 149-154.	13.8	258
13	A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 2015, 6, 3926-3930.	7.4	236
14	Stepwise Synthesis of Robust Metal–Organic Frameworks via Postsynthetic Metathesis and Oxidation of Metal Nodes in a Single-Crystal to Single-Crystal Transformation. Journal of the American Chemical Society, 2014, 136, 7813-7816.	13.7	215
15	Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chemical Science, 2016, 7, 6969-6973.	7.4	208
16	Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14696-14700.	13.8	169
17	Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction. Catalysis Communications, 2011, 14, 27-31.	3.3	162
18	A water-insoluble and visible light induced polyoxometalate-based photocatalyst. Chemical Communications, 2010, 46, 2429.	4.1	143

#	Article	IF	Citations
19	Monolayer Nilr-Layered Double Hydroxide as a Long-Lived Efficient Oxygen Evolution Catalyst for Seawater Splitting. Journal of the American Chemical Society, 2022, 144, 9254-9263.	13.7	133
20	Record Complexity in the Polycatenation of Three Porous Hydrogen-Bonded Organic Frameworks with Stepwise Adsorption Behaviors. Journal of the American Chemical Society, 2020, 142, 7218-7224.	13.7	132
21	Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands. CrystEngComm, 2010, 12, 660-670.	2.6	126
22	Isostructural Metal–Organic Frameworks Assembled from Functionalized Diisophthalate Ligands through a Ligandâ€√runcation Strategy. Chemistry - A European Journal, 2013, 19, 5637-5643.	3.3	115
23	Conjugated Ligands Modulated Sandwich Structures and Luminescence Properties of Lanthanide Metal–Organic Frameworks. Inorganic Chemistry, 2011, 50, 5242-5248.	4.0	114
24	A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chemical Science, 2016, 7, 1063-1069.	7.4	114
25	A Reversible Crystallinity-Preserving Phase Transition in Metal–Organic Frameworks: Discovery, Mechanistic Studies, and Potential Applications. Journal of the American Chemical Society, 2015, 137, 7740-7746.	13.7	113
26	Monodisperse noble metal nanoparticles stabilized in SBA-15: Synthesis, characterization and application in microwave-assisted Suzuki–Miyaura coupling reaction. Journal of Catalysis, 2010, 270, 268-274.	6.2	108
27	Microwave-Assisted Synthesis of a Series of Lanthanide Metal–Organic Frameworks and Gas Sorption Properties. Inorganic Chemistry, 2012, 51, 1813-1820.	4.0	106
28	Homochiral Nickel Coordination Polymers Based on Salen(Ni) Metalloligands: Synthesis, Structure, and Catalytic Alkene Epoxidation. Inorganic Chemistry, 2011, 50, 2191-2198.	4.0	103
29	Titaniumâ€Based MOF Materials: From Crystal Engineering to Photocatalysis. Small Methods, 2020, 4, 2000486.	8.6	98
30	An Electrochromic Hydrogenâ€Bonded Organic Framework Film. Angewandte Chemie - International Edition, 2020, 59, 22392-22396.	13.8	97
31	Interconversion between Discrete and a Chain of Nanocages: Self-Assembly via a Solvent-Driven, Dimension-Augmentation Strategy. Journal of the American Chemical Society, 2012, 134, 17358-17361.	13.7	95
32	Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nature Communications, 2016, 7, 11830.	12.8	92
33	Urea Metal–Organic Frameworks for Nitro-Substituted Compounds Sensing. Inorganic Chemistry, 2017, 56, 1446-1454.	4.0	92
34	Porous Anionic, Cationic, and Neutral Metal-Carboxylate Frameworks Constructed from Flexible Tetrapodal Ligands: Syntheses, Structures, Ion-Exchanges, and Magnetic Properties. Inorganic Chemistry, 2011, 50, 2264-2271.	4.0	90
35	A Series of Lanthanide Metal–Organic Frameworks Based on Biphenylâ€3,4′,5â€tricarboxylate: Syntheses, Structures, Luminescence and Magnetic Properties. European Journal of Inorganic Chemistry, 2010, 2010, 3842-3849.	2.0	89
36	Palladium Nanoparticles Supported on Mixedâ€Linker Metal–Organic Frameworks as Highly Active Catalysts for Heck Reactions. ChemPlusChem, 2012, 77, 106-112.	2.8	88

#	Article	IF	CITATIONS
37	Ionic Hydrogenâ€Bonded Organic Frameworks for Ionâ€Responsive Antimicrobial Membranes. Advanced Materials, 2020, 32, e2005912.	21.0	88
38	Construction of a Polyhedral Metal–Organic Framework via a Flexible Octacarboxylate Ligand for Gas Adsorption and Separation. Inorganic Chemistry, 2013, 52, 3127-3132.	4.0	85
39	An Ultraâ€Robust and Crystalline Redeemable Hydrogenâ€Bonded Organic Framework for Synergistic Chemoâ€Photodynamic Therapy. Angewandte Chemie, 2018, 130, 7817-7822.	2.0	85
40	Iron(II) complexes ligated by 2-imino-1,10-phenanthrolines: Preparation and catalytic behavior toward ethylene oligomerization. Journal of Molecular Catalysis A, 2007, 269, 85-96.	4.8	84
41	Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6014-6023.	8.0	81
42	Metallizationâ€Prompted Robust Porphyrinâ€Based Hydrogenâ€Bonded Organic Frameworks for Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	81
43	Unusual High Thermal Stability within a Series of Novel Lanthanide TATB Frameworks: Synthesis, Structure, and Properties (TATBÂ=Â4,4′,4″-s-Triazine-2,4,6-triyl-tribenzoate). Crystal Growth and Design, 2012, 12, 670-678.	3.0	76
44	Dual-Emitting UiO-66(Zr&Eu) Metal–Organic Framework Films for Ratiometric Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20854-20861.	8.0	76
45	Development of a polyoxometallate-based photocatalyst assembled with cucurbit[6]uril via hydrogen bonds for azo dyes degradation. Journal of Hazardous Materials, 2011, 186, 948-951.	12.4	73
46	New Metalâ^'Organic Framework with Uninodal 4-Connected Topology Displaying Interpenetration, Self-Catenation, and Second-Order Nonlinear Optical Response. Crystal Growth and Design, 2010, 10, 1489-1491.	3.0	71
47	Highly Selective CO ₂ Electroreduction to CH ₄ by Inâ€Situ Generated Cu ₂ O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie, 2020, 132, 23849-23856.	2.0	70
48	C-QDs@UiO-66-(COOH) ₂ Composite Film via Electrophoretic Deposition for Temperature Sensing. Inorganic Chemistry, 2018, 57, 2447-2454.	4.0	69
49	Creating Chemisorption Sites for Enhanced CO ₂ Photoreduction Activity through Alkylamine Modification of MIL-101-Cr. ACS Applied Materials & Enterfaces, 2019, 11, 27017-27023.	8.0	67
50	Interpenetrated metal–organic frameworks of self-catenated four-connected mok nets. Chemical Communications, 2011, 47, 5982.	4.1	66
51	A Guestâ€Dependent Approach to Retain Permanent Pores in Flexible Metal–Organic Frameworks by Cation Exchange. Chemistry - A European Journal, 2012, 18, 7896-7902.	3.3	66
52	Conformation control of a flexible 1,4-phenylenediacetate ligand in coordination complexes: a rigidity-modulated strategy. CrystEngComm, 2009, 11, 583-588.	2.6	63
53	Construction of Functionâ€Oriented Core–Shell Nanostructures in Hydrogenâ€Bonded Organic Frameworks for Nearâ€Infraredâ€Responsive Bacterial Inhibition. Angewandte Chemie - International Edition, 2021, 60, 25701-25707.	13.8	62
54	Construction of a trigonal bipyramidal cage-based metal–organic framework with hydrophilic pore surface via flexible tetrapodal ligands. Chemical Communications, 2010, 46, 8439.	4.1	61

#	Article	IF	CITATIONS
55	Adding to the Arsenal of Zirconiumâ€Based Metal–Organic Frameworks: <i>the</i> Topology as a Platform for Solventâ€Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4349-4352.	2.0	59
56	The preparation of an ultrastable mesoporous Cr(<scp>iii</scp>)-MOF via reductive labilization. Chemical Science, 2015, 6, 7044-7048.	7.4	56
57	Novel Hierarchical Meso-Microporous Hydrogen-Bonded Organic Framework for Selective Separation of Acetylene and Ethylene versus Methane. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17823-17827.	8.0	56
58	A Comparison of Two Isoreticular Metal–Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 4385-4390.	13.8	56
59	<i>In Situ</i> Growth of Metal–Organic Framework Thin Films with Gas Sensing and Molecule Storage Properties. Langmuir, 2013, 29, 8657-8664.	3.5	53
60	Design and synthesis of nucleobase-incorporated metal–organic materials. Inorganic Chemistry Frontiers, 2014, 1, 159.	6.0	52
61	Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts. Chemical Communications, 2015, 51, 4005-4008.	4.1	50
62	Pore-size tuning in double-pillared metal–organic frameworks containing cadmium clusters. CrystEngComm, 2011, 13, 3321.	2.6	49
63	Two Novel 3d-4f Heterometallic Frameworks Assembled from a Flexible Bifunctional Macrocyclic Ligand. Crystal Growth and Design, 2012, 12, 4708-4711.	3.0	46
64	Integrating active C ₃ N ₄ moieties in hydrogen-bonded organic frameworks for efficient photocatalysis. Journal of Materials Chemistry A, 2021, 9, 4687-4691.	10.3	45
65	Rare Earth Metal Oxalatophosphonates: Syntheses, Structure Diversity, and Photoluminescence Properties. Crystal Growth and Design, 2010, 10, 608-617.	3.0	44
66	Designed 4,8-Connected Metal–Organic Frameworks Based on Tetrapodal Octacarboxylate Ligands. Crystal Growth and Design, 2011, 11, 4284-4287.	3.0	43
67	Partial Metalation of Porphyrin Moieties in Hydrogenâ€Bonded Organic Frameworks Provides Enhanced CO ₂ Photoreduction Activity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
68	The fabrication of palladium–pyridyl complex multilayers and their application as a catalyst for the Heck reaction. Journal of Materials Chemistry, 2011, 21, 16467.	6.7	40
69	Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721.	12.8	38
70	Creating Giant Secondary Building Layers via Alkali-Etching Exfoliation for Precise Synthesis of Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 7584-7589.	6.7	35
71	Synthesis and Applications of Stable Iron-Based Metal–Organic Framework Materials. Crystal Growth and Design, 2021, 21, 3100-3122.	3.0	34
72	Robust Microporous Porphyrin-Based Hydrogen-Bonded Organic Framework for Highly Selective Separation of C ₂ Hydrocarbons versus Methane. Crystal Growth and Design, 2019, 19, 4157-4161.	3.0	33

#	Article	IF	CITATIONS
73	Bimetallic Cationic Metal–Organic Frameworks for Selective Dye Adsorption and Effective Cr ₂ Osub>7 ^{2–} Removal. Crystal Growth and Design, 2020, 20, 4861-4866.	3.0	32
74	Engineering Hierarchical Architecture of Metalâ€Organic Frameworks for Highly Efficient Overall CO ₂ Photoreduction. Small, 2022, 18, e2200407.	10.0	29
75	Homochiral Supramolecular Compounds Constructed from Amino Acid Derivatives: Syntheses, Structures, Chiroptical, and Photoluminescence Properties. Crystal Growth and Design, 2010, 10, 3051-3059.	3.0	28
76	Hot-electron leading-out strategy for constructing photostable HOF catalysts with outstanding H2 evolution activity. Applied Catalysis B: Environmental, 2021, 296, 120337.	20.2	28
77	Reticular Synthesis of Hydrogenâ€Bonded Organic Frameworks and Their Derivatives via Mechanochemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
78	An easy and low-cost method of embedding chiral molecules in metal–organic frameworks for enantioseparation. Chemical Communications, 2020, 56, 7459-7462.	4.1	25
79	Designing a Bifunctional Brønsted Acid–Base Heterogeneous Catalyst Through Precise Installation of Ligands on Metal–Organic Frameworks. CCS Chemistry, 2020, 2, 616-622.	7.8	24
80	Selective gas adsorption and unique phase transition properties in a stable magnesium metal-organic framework constructed from infinite metal chains. CrystEngComm, 2013, 15, 9688.	2.6	22
81	Crystal structures and fluorescence of two Cd(II) complexes based on N-(3-carboxyphenyl)iminodiacetic acid and 5-amino isophthailic acid. Journal of Molecular Structure, 2010, 965, 82-88.	3.6	19
82	Precise Construction of Stable Bimetallic Metal–Organic Frameworks with Single-Site Ti(IV) Incorporation in Nodes for Efficient Photocatalytic Oxygen Evolution. CCS Chemistry, 2022, 4, 2782-2792.	7.8	19
83	Rare Case of a Triple-Stranded Molecular Braid in an Organic Cocrystal. Crystal Growth and Design, 2010, 10, 4217-4220.	3.0	18
84	Fabrication of Lanthanide-Functionalized Hydrogen-Bonded Organic Framework Films for Ratiometric Temperature Sensing by Electrophoretic Deposition. ACS Applied Materials & Interfaces, 2020, 12, 29854-29860.	8.0	18
85	Single-crystal-to-single-crystal transformation of tetrathiafulvalene-based hydrogen-bonded organic frameworks. CrystEngComm, 2021, 23, 4743-4747.	2.6	18
86	Porous hydrogen-bonded organic framework membranes for high-performance molecular separation. Nanoscale Advances, 2021, 3, 3441-3446.	4.6	18
87	Radiochromic Hydrogenâ€Bonded Organic Frameworks for Xâ€ray Detection. Chemistry - A European Journal, 2021, 27, 10957-10965.	3.3	18
88	Building Block Symmetry Relegation Induces Mesopore and Abundant Open-Metal Sites in Metal–Organic Frameworks for Cancer Therapy. CCS Chemistry, 2022, 4, 996-1006.	7.8	16
89	Facile Preparation of Hydrogen-Bonded Organic Framework/Cu ₂ O Heterostructure Films via Electrophoretic Deposition for Efficient CO ₂ Photoreduction. ACS Applied Materials & amp; Interfaces, 2022, 14, 21050-21058.	8.0	16
90	A new 3-fold interpenetration of diamond-like network constructed from polyoxometalate building blocks. Inorganic Chemistry Communication, 2009, 12, 605-607.	3.9	15

#	Article	IF	CITATIONS
91	Crystalline Hydrogenâ€Bonded Organic Chains Achieving Ultralong Phosphorescence via Triplet–Triplet Energy Transfer. Advanced Optical Materials, 2020, 8, 2000281.	7.3	15
92	Designing a Bifunctional Brønsted Acid–Base Heterogeneous Catalyst Through Precise Installation of Ligands on Metal–Organic Frameworks. CCS Chemistry, 2020, 2, 616-622.	7.8	15
93	Metallizationâ€Prompted Robust Porphyrinâ€Based Hydrogenâ€Bonded Organic Frameworks for Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	2.0	15
94	An Electrochromic Hydrogenâ€Bonded Organic Framework Film. Angewandte Chemie, 2020, 132, 22578-22582.	2.0	14
95	Rational design of phosphonocarboxylate metal–organic frameworks for light hydrocarbon separations. Materials Chemistry Frontiers, 2018, 2, 1436-1440.	5. 9	13
96	A low-temperature synthesis-induced defect formation strategy for stable hierarchical porous metal–organic frameworks. Chinese Chemical Letters, 2019, 30, 2309-2312.	9.0	13
97	Stable pyrazolate-based metal-organic frameworks for drug delivery. Inorganic Chemistry Communication, 2018, 94, 21-26.	3.9	12
98	Crystal structures and luminescent properties of two cadmium complexes containing the N,N′-bis-(4-pyridylmethyl) piperazine ligand. Journal of Molecular Structure, 2009, 938, 316-321.	3.6	11
99	Syntheses and characterizations of two new pillared-layer coordination polymers constructed from lanthanides and mixed O-donor ligands. Inorganic Chemistry Communication, 2010, 13, 388-391.	3.9	10
100	Crystal engineering on superpolyhedral building blocks in metal–organic frameworks applied in gas adsorption. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 613-618.	1.1	10
101	A Comparison of Two Isoreticular Metal–Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity. Angewandte Chemie, 2020, 132, 4415-4420.	2.0	10
102	Metal–Organic Frameworks Derived Plasmonic Catalyst with Full Spectral Response for Photoelectrochemical Water Splitting Enhancement. Small Structures, 2022, 3, 2100071.	12.0	10
103	Tuning the Structure and Hydrolysis Stability of Calcium Metal–Organic Frameworks through Integrating Carboxylic/Phosphinic/Phosphonic Groups in Building Blocks. Crystal Growth and Design, 2020, 20, 8021-8027.	3.0	10
104	Trace of molecular doping in metal–organic frameworks: drastic change in the electronic band structure with a preserved topology and porosity. Journal of Materials Chemistry A, 2020, 8, 12370-12377.	10.3	9
105	Preparation and characterization of lanthanide–azo-dye coordination polymers and polymer thin films via layer-by-layer depositions. Dalton Transactions, 2010, 39, 10967.	3.3	7
106	Construction of Functionâ€Oriented Core–Shell Nanostructures in Hydrogenâ€Bonded Organic Frameworks for Nearâ€Infraredâ€Responsive Bacterial Inhibition. Angewandte Chemie, 0, , .	2.0	7
107	Incorporation of Polyoxometalate in Sulfonic Acidâ€modified MILâ€101â€Cr for Enhanced CO ₂ Photoreduction Activity. European Journal of Inorganic Chemistry, 2021, 2021, 681-687.	2.0	6
108	Harnessing Electrostatic Interactions for Enhanced Conductivity in Metal-Organic Frameworks. Research, 2021, 2021, 9874273.	5.7	6

#	Article	IF	Citations
109	Embedding red-emitting dyes in robust hydrogen-bonded organic framework for application in warm white light-emitting diodes. Microporous and Mesoporous Materials, 2022, 331, 111673.	4.4	6
110	Modulating Photoinduced Charge Separation in Metal–Azolate Frameworks. Journal of Physical Chemistry C, 2021, 125, 2064-2073.	3.1	5
111	Post-modification of metal-organic framework for improved CO2 photoreduction efficiency. Chinese Chemical Letters, 2023, 34, 107311.	9.0	5
112	Reticular Synthesis of Hydrogenâ€Bonded Organic Frameworks and Their Derivatives via Mechanochemistry. Angewandte Chemie, 2022, 134, .	2.0	5
113	Near-infrared photothermal performance of a metal–organic framework-based composite. Dalton Transactions, 2021, 50, 17499-17505.	3.3	4
114	Partial Metalation of Porphyrin Moieties in Hydrogenâ€Bonded Organic Frameworks Provides Enhanced CO ₂ Photoreduction Activity. Angewandte Chemie, 2022, 134, .	2.0	4
115	Dipolar cycloaddition strategy for three-component synthesis of chromeno[3′,4′:3,4]pyrido[2,1-a]isoquinoline derivatives. Molecular Diversity, 2021, 25, 701-710.	3.9	3
116	Engineered design of a new HOF by simultaneous monitoring of reaction environment conductivity. Journal of Solid State Chemistry, 2022, 307, 122834.	2.9	3
117	Back Cover: Partial Metalation of Porphyrin Moieties in Hydrogenâ€Bonded Organic Frameworks Provides Enhanced CO ₂ Photoreduction Activity (Angew. Chem. Int. Ed. 28/2022). Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
118	Activation energy of the reaction between hexacyanoferrate (θ) and thiosulfate ions catalyzed by platinum nanoparticles confined in nanometer space. Journal of Colloid and Interface Science, 2012, 369, 352-357.	9.4	2
119	Two interpenetrated metal-organic frameworks: The CH4 and CO2 adsorption and in-situ XRD studies. Inorganic Chemistry Communication, 2019, 108, 107503.	3.9	2
120	Metal–Organic Frameworks Derived Plasmonic Catalyst with Full Spectral Response for Photoelectrochemical Water Splitting Enhancement. Small Structures, 2022, 3, .	12.0	2
121	Adding to the Arsenal of Zirconium-Based Metal-Organic Frameworks: the Topology as a Platform for Solvent-Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4266-4266.	2.0	1
122	Frontispiece: Highly Selective CO ₂ Electroreduction to CH ₄ by Inâ€Situ Generated Cu ₂ O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie - International Edition, 2020, 59, .	13.8	1
123	Chelating Metal lons in a Metal-Organic Framework for Constructing a Biomimetic Catalyst Through Post-modification. Chemical Research in Chinese Universities, 2022, 38, 1542-1546.	2.6	1
124	Frontispiz: Highly Selective CO ₂ Electroreduction to CH ₄ by Inâ€Situ Generated Cu ₂ O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie, 2020, 132, .	2.0	0
125	Titelbild: Construction of Functionâ€Oriented Core–Shell Nanostructures in Hydrogenâ€Bonded Organic Frameworks for Nearâ€Infraredâ€Responsive Bacterial Inhibition (Angew. Chem. 49/2021). Angewandte Chemie, 2021, 133, 25789-25789.	2.0	0
126	Charge transfer in mixed and segregated stacks of tetrathiafulvalene, tetrathianaphthalene and naphthalene diimide: a structural, spectroscopic and computational study. New Journal of Chemistry, 0, , .	2.8	0

#	ARTICLE	IF	CITATIONS
127	RÃ1⁄4cktitelbild: Partial Metalation of Porphyrin Moieties in Hydrogenâ€Bonded Organic Frameworks Provides Enhanced CO ₂ Photoreduction Activity (Angew. Chem. 28/2022). Angewandte Chemie, 2022, 134, .	2.0	O