
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1962716/publications.pdf Version: 2024-02-01

ΤιλΝ-Ευτί υτ

#	Article	IF	CITATIONS
1	Post-modification of metal-organic framework for improved CO2 photoreduction efficiency. Chinese Chemical Letters, 2023, 34, 107311.	9.0	5
2	Building Block Symmetry Relegation Induces Mesopore and Abundant Open-Metal Sites in Metal–Organic Frameworks for Cancer Therapy. CCS Chemistry, 2022, 4, 996-1006.	7.8	16
3	Metal–Organic Frameworks Derived Plasmonic Catalyst with Full Spectral Response for Photoelectrochemical Water Splitting Enhancement. Small Structures, 2022, 3, 2100071.	12.0	10
4	Precise Construction of Stable Bimetallic Metal–Organic Frameworks with Single-Site Ti(IV) Incorporation in Nodes for Efficient Photocatalytic Oxygen Evolution. CCS Chemistry, 2022, 4, 2782-2792.	7.8	19
5	Engineered design of a new HOF by simultaneous monitoring of reaction environment conductivity. Journal of Solid State Chemistry, 2022, 307, 122834.	2.9	3
6	Embedding red-emitting dyes in robust hydrogen-bonded organic framework for application in warm white light-emitting diodes. Microporous and Mesoporous Materials, 2022, 331, 111673.	4.4	6
7	Engineering Hierarchical Architecture of Metalâ€Organic Frameworks for Highly Efficient Overall CO ₂ Photoreduction. Small, 2022, 18, e2200407.	10.0	29
8	Metallizationâ€Prompted Robust Porphyrinâ€Based Hydrogenâ€Bonded Organic Frameworks for Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	81
9	Metallizationâ€Prompted Robust Porphyrinâ€Based Hydrogenâ€Bonded Organic Frameworks for Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	2.0	15
10	Partial Metalation of Porphyrin Moieties in Hydrogenâ€Bonded Organic Frameworks Provides Enhanced CO ₂ Photoreduction Activity. Angewandte Chemie, 2022, 134, .	2.0	4
11	Partial Metalation of Porphyrin Moieties in Hydrogenâ€Bonded Organic Frameworks Provides Enhanced CO ₂ Photoreduction Activity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
12	Reticular Synthesis of Hydrogenâ€Bonded Organic Frameworks and Their Derivatives via Mechanochemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
13	Facile Preparation of Hydrogen-Bonded Organic Framework/Cu ₂ O Heterostructure Films via Electrophoretic Deposition for Efficient CO ₂ Photoreduction. ACS Applied Materials & Interfaces, 2022, 14, 21050-21058.	8.0	16
14	Reticular Synthesis of Hydrogenâ€Bonded Organic Frameworks and Their Derivatives via Mechanochemistry. Angewandte Chemie, 2022, 134, .	2.0	5
15	Monolayer Nilr-Layered Double Hydroxide as a Long-Lived Efficient Oxygen Evolution Catalyst for Seawater Splitting. Journal of the American Chemical Society, 2022, 144, 9254-9263.	13.7	133
16	Metal–Organic Frameworks Derived Plasmonic Catalyst with Full Spectral Response for Photoelectrochemical Water Splitting Enhancement. Small Structures, 2022, 3, .	12.0	2
17	Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721.	12.8	38
18	Chelating Metal Ions in a Metal-Organic Framework for Constructing a Biomimetic Catalyst Through Post-modification. Chemical Research in Chinese Universities, 2022, 38, 1542-1546.	2.6	1

#	Article	IF	CITATIONS
19	Back Cover: Partial Metalation of Porphyrin Moieties in Hydrogenâ€Bonded Organic Frameworks Provides Enhanced CO ₂ Photoreduction Activity (Angew. Chem. Int. Ed. 28/2022). Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
20	Rücktitelbild: Partial Metalation of Porphyrin Moieties in Hydrogenâ€Bonded Organic Frameworks Provides Enhanced CO ₂ Photoreduction Activity (Angew. Chem. 28/2022). Angewandte Chemie, 2022, 134, .	2.0	0
21	Dipolar cycloaddition strategy for three-component synthesis of chromeno[3′,4′:3,4]pyrido[2,1-a]isoquinoline derivatives. Molecular Diversity, 2021, 25, 701-710.	3.9	3
22	Modulating Photoinduced Charge Separation in Metal–Azolate Frameworks. Journal of Physical Chemistry C, 2021, 125, 2064-2073.	3.1	5
23	Integrating active C ₃ N ₄ moieties in hydrogen-bonded organic frameworks for efficient photocatalysis. Journal of Materials Chemistry A, 2021, 9, 4687-4691.	10.3	45
24	Single-crystal-to-single-crystal transformation of tetrathiafulvalene-based hydrogen-bonded organic frameworks. CrystEngComm, 2021, 23, 4743-4747.	2.6	18
25	Porous hydrogen-bonded organic framework membranes for high-performance molecular separation. Nanoscale Advances, 2021, 3, 3441-3446.	4.6	18
26	Incorporation of Polyoxometalate in Sulfonic Acidâ€modified MILâ€101â€Cr for Enhanced CO ₂ Photoreduction Activity. European Journal of Inorganic Chemistry, 2021, 2021, 681-687.	2.0	6
27	Synthesis and Applications of Stable Iron-Based Metal–Organic Framework Materials. Crystal Growth and Design, 2021, 21, 3100-3122.	3.0	34
28	Radiochromic Hydrogenâ€Bonded Organic Frameworks for Xâ€ray Detection. Chemistry - A European Journal, 2021, 27, 10957-10965.	3.3	18
29	Construction of Functionâ€Oriented Core–Shell Nanostructures in Hydrogenâ€Bonded Organic Frameworks for Nearâ€Infraredâ€Responsive Bacterial Inhibition. Angewandte Chemie - International Edition, 2021, 60, 25701-25707.	13.8	62
30	Hot-electron leading-out strategy for constructing photostable HOF catalysts with outstanding H2 evolution activity. Applied Catalysis B: Environmental, 2021, 296, 120337.	20.2	28
31	Harnessing Electrostatic Interactions for Enhanced Conductivity in Metal-Organic Frameworks. Research, 2021, 2021, 9874273.	5.7	6
32	Titelbild: Construction of Functionâ€Oriented Core–Shell Nanostructures in Hydrogenâ€Bonded Organic Frameworks for Nearâ€Infraredâ€Responsive Bacterial Inhibition (Angew. Chem. 49/2021). Angewandte Chemie, 2021, 133, 25789-25789.	2.0	0
33	Near-infrared photothermal performance of a metal–organic framework-based composite. Dalton Transactions, 2021, 50, 17499-17505.	3.3	4
34	Highly Selective CO ₂ Electroreduction to CH ₄ by Inâ€Situ Generated Cu ₂ O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie, 2020, 132, 23849-23856.	2.0	70
35	Bimetallic Cationic Metal–Organic Frameworks for Selective Dye Adsorption and Effective Cr ₂ O ₇ ^{2–} Removal. Crystal Growth and Design, 2020, 20, 4861-4866.	3.0	32
36	Ionic Hydrogenâ€Bonded Organic Frameworks for Ionâ€Responsive Antimicrobial Membranes. Advanced Materials, 2020, 32, e2005912.	21.0	88

TIAN-FU LIU

#	Article	IF	CITATIONS
37	An Electrochromic Hydrogenâ€Bonded Organic Framework Film. Angewandte Chemie - International Edition, 2020, 59, 22392-22396.	13.8	97
38	An Electrochromic Hydrogenâ€Bonded Organic Framework Film. Angewandte Chemie, 2020, 132, 22578-22582.	2.0	14
39	Highly Selective CO ₂ Electroreduction to CH ₄ by Inâ€Situ Generated Cu ₂ O Singleâ€₹ype Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie - International Edition, 2020, 59, 23641-23648.	13.8	335
40	Titaniumâ€Based MOF Materials: From Crystal Engineering to Photocatalysis. Small Methods, 2020, 4, 2000486.	8.6	98
41	Frontispiece: Highly Selective CO ₂ Electroreduction to CH ₄ by Inâ€Situ Generated Cu ₂ O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie - International Edition, 2020, 59, .	13.8	1
42	Frontispiz: Highly Selective CO ₂ Electroreduction to CH ₄ by Inâ€Situ Generated Cu ₂ O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie, 2020, 132, .	2.0	0
43	Crystalline Hydrogenâ€Bonded Organic Chains Achieving Ultralong Phosphorescence via Triplet–Triplet Energy Transfer. Advanced Optical Materials, 2020, 8, 2000281.	7.3	15
44	Fabrication of Lanthanide-Functionalized Hydrogen-Bonded Organic Framework Films for Ratiometric Temperature Sensing by Electrophoretic Deposition. ACS Applied Materials & Interfaces, 2020, 12, 29854-29860.	8.0	18
45	Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO ₂ Photoreduction via Rational Design of Coordination Spheres on Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 12515-12523.	13.7	289
46	Record Complexity in the Polycatenation of Three Porous Hydrogen-Bonded Organic Frameworks with Stepwise Adsorption Behaviors. Journal of the American Chemical Society, 2020, 142, 7218-7224.	13.7	132
47	A Comparison of Two Isoreticular Metal–Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity. Angewandte Chemie, 2020, 132, 4415-4420.	2.0	10
48	A Comparison of Two Isoreticular Metal–Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 4385-4390.	13.8	56
49	Tuning the Structure and Hydrolysis Stability of Calcium Metal–Organic Frameworks through Integrating Carboxylic/Phosphinic/Phosphonic Groups in Building Blocks. Crystal Growth and Design, 2020, 20, 8021-8027.	3.0	10
50	An easy and low-cost method of embedding chiral molecules in metal–organic frameworks for enantioseparation. Chemical Communications, 2020, 56, 7459-7462.	4.1	25
51	Trace of molecular doping in metal–organic frameworks: drastic change in the electronic band structure with a preserved topology and porosity. Journal of Materials Chemistry A, 2020, 8, 12370-12377.	10.3	9
52	Designing a Bifunctional BrÃ,nsted Acid–Base Heterogeneous Catalyst Through Precise Installation of Ligands on Metal–Organic Frameworks. CCS Chemistry, 2020, 2, 616-622.	7.8	24
53	Designing a Bifunctional BrÃ,nsted Acid–Base Heterogeneous Catalyst Through Precise Installation of Ligands on Metal–Organic Frameworks. CCS Chemistry, 2020, 2, 616-622.	7.8	15
54	Creating Giant Secondary Building Layers via Alkali-Etching Exfoliation for Precise Synthesis of Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 7584-7589.	6.7	35

#	Article	IF	CITATIONS
55	Two interpenetrated metal-organic frameworks: The CH4 and CO2 adsorption and in-situ XRD studies. Inorganic Chemistry Communication, 2019, 108, 107503.	3.9	2
56	Creating Chemisorption Sites for Enhanced CO ₂ Photoreduction Activity through Alkylamine Modification of MIL-101-Cr. ACS Applied Materials & Interfaces, 2019, 11, 27017-27023.	8.0	67
57	Robust Microporous Porphyrin-Based Hydrogen-Bonded Organic Framework for Highly Selective Separation of C ₂ Hydrocarbons versus Methane. Crystal Growth and Design, 2019, 19, 4157-4161.	3.0	33
58	Novel Hierarchical Meso-Microporous Hydrogen-Bonded Organic Framework for Selective Separation of Acetylene and Ethylene versus Methane. ACS Applied Materials & Interfaces, 2019, 11, 17823-17827.	8.0	56
59	A low-temperature synthesis-induced defect formation strategy for stable hierarchical porous metal–organic frameworks. Chinese Chemical Letters, 2019, 30, 2309-2312.	9.0	13
60	An Ultraâ€Robust and Crystalline Redeemable Hydrogenâ€Bonded Organic Framework for Synergistic Chemoâ€Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 7691-7696.	13.8	303
61	C-QDs@UiO-66-(COOH) ₂ Composite Film via Electrophoretic Deposition for Temperature Sensing. Inorganic Chemistry, 2018, 57, 2447-2454.	4.0	69
62	Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing. ACS Applied Materials & 2018, 10, 6014-6023.	8.0	81
63	Fluorescent Metal–Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater. Inorganic Chemistry, 2018, 57, 1060-1065.	4.0	270
64	An Ultraâ€Robust and Crystalline Redeemable Hydrogenâ€Bonded Organic Framework for Synergistic Chemoâ€Photodynamic Therapy. Angewandte Chemie, 2018, 130, 7817-7822.	2.0	85
65	Rational design of phosphonocarboxylate metal–organic frameworks for light hydrocarbon separations. Materials Chemistry Frontiers, 2018, 2, 1436-1440.	5.9	13
66	Dual-Emitting UiO-66(Zr&Eu) Metal–Organic Framework Films for Ratiometric Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20854-20861.	8.0	76
67	Stable pyrazolate-based metal-organic frameworks for drug delivery. Inorganic Chemistry Communication, 2018, 94, 21-26.	3.9	12
68	Urea Metal–Organic Frameworks for Nitro-Substituted Compounds Sensing. Inorganic Chemistry, 2017, 56, 1446-1454.	4.0	92
69	Adding to the Arsenal of Zirconium-Based Metal-Organic Frameworks:theTopology as a Platform for Solvent-Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4266-4266.	2.0	1
70	Adding to the Arsenal of Zirconiumâ€Based Metal–Organic Frameworks: <i>the</i> Topology as a Platform for Solventâ€Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4349-4352.	2.0	59
71	Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chemical Science, 2016, 7, 6969-6973.	7.4	208
72	Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nature Communications, 2016, 7, 11830.	12.8	92

#	Article	IF	CITATIONS
73	A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chemical Science, 2016, 7, 1063-1069.	7.4	114
74	Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14696-14700.	13.8	169
75	A Reversible Crystallinity-Preserving Phase Transition in Metal–Organic Frameworks: Discovery, Mechanistic Studies, and Potential Applications. Journal of the American Chemical Society, 2015, 137, 7740-7746.	13.7	113
76	Crystal engineering on superpolyhedral building blocks in metal–organic frameworks applied in gas adsorption. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 613-618.	1.1	10
77	Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts. Chemical Communications, 2015, 51, 4005-4008.	4.1	50
78	Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 2015, 6, 5979.	12.8	540
79	Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 3177-3180.	13.7	323
80	A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 2015, 6, 3926-3930.	7.4	236
81	The preparation of an ultrastable mesoporous Cr(<scp>iii</scp>)-MOF via reductive labilization. Chemical Science, 2015, 6, 7044-7048.	7.4	56
82	Topology-Guided Design and Syntheses of Highly Stable Mesoporous Porphyrinic Zirconium Metal–Organic Frameworks with High Surface Area. Journal of the American Chemical Society, 2015, 137, 413-419.	13.7	352
83	A Highly Stable Zeotype Mesoporous Zirconium Metal–Organic Framework with Ultralarge Pores. Angewandte Chemie - International Edition, 2015, 54, 149-154.	13.8	258
84	Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 2014, 5, 5723.	12.8	332
85	Design and synthesis of nucleobase-incorporated metal–organic materials. Inorganic Chemistry Frontiers, 2014, 1, 159.	6.0	52
86	Stepwise Synthesis of Robust Metal–Organic Frameworks via Postsynthetic Metathesis and Oxidation of Metal Nodes in a Single-Crystal to Single-Crystal Transformation. Journal of the American Chemical Society, 2014, 136, 7813-7816.	13.7	215
87	A Series of Highly Stable Mesoporous Metalloporphyrin Fe-MOFs. Journal of the American Chemical Society, 2014, 136, 13983-13986.	13.7	363
88	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	38.1	1,792
89	Selective gas adsorption and unique phase transition properties in a stable magnesium metal-organic framework constructed from infinite metal chains. CrystEngComm, 2013, 15, 9688.	2.6	22
90	Construction of a Polyhedral Metal–Organic Framework via a Flexible Octacarboxylate Ligand for Gas Adsorption and Separation. Inorganic Chemistry, 2013, 52, 3127-3132.	4.0	85

#	Article	IF	CITATIONS
91	Isostructural Metal–Organic Frameworks Assembled from Functionalized Diisophthalate Ligands through a Ligandâ€Truncation Strategy. Chemistry - A European Journal, 2013, 19, 5637-5643.	3.3	115
92	<i>In Situ</i> Growth of Metal–Organic Framework Thin Films with Gas Sensing and Molecule Storage Properties. Langmuir, 2013, 29, 8657-8664.	3.5	53
93	Two Novel 3d-4f Heterometallic Frameworks Assembled from a Flexible Bifunctional Macrocyclic Ligand. Crystal Growth and Design, 2012, 12, 4708-4711.	3.0	46
94	Pore Surface Engineering with Controlled Loadings of Functional Groups via Click Chemistry in Highly Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 14690-14693.	13.7	351
95	Microwave-Assisted Synthesis of a Series of Lanthanide Metal–Organic Frameworks and Gas Sorption Properties. Inorganic Chemistry, 2012, 51, 1813-1820.	4.0	106
96	Interconversion between Discrete and a Chain of Nanocages: Self-Assembly via a Solvent-Driven, Dimension-Augmentation Strategy. Journal of the American Chemical Society, 2012, 134, 17358-17361.	13.7	95
97	Unusual High Thermal Stability within a Series of Novel Lanthanide TATB Frameworks: Synthesis, Structure, and Properties (TATBÂ=Â4,4′,4″-s-Triazine-2,4,6-triyl-tribenzoate). Crystal Growth and Design, 2012, 12, 670-678.	3.0	76
98	A Guestâ€Dependent Approach to Retain Permanent Pores in Flexible Metal–Organic Frameworks by Cation Exchange. Chemistry - A European Journal, 2012, 18, 7896-7902.	3.3	66
99	Palladium Nanoparticles Supported on Mixedâ€Linker Metal–Organic Frameworks as Highly Active Catalysts for Heck Reactions. ChemPlusChem, 2012, 77, 106-112.	2.8	88
100	Activation energy of the reaction between hexacyanoferrate (Đ [·]) and thiosulfate ions catalyzed by platinum nanoparticles confined in nanometer space. Journal of Colloid and Interface Science, 2012, 369, 352-357.	9.4	2
101	The fabrication of palladium–pyridyl complex multilayers and their application as a catalyst for the Heck reaction. Journal of Materials Chemistry, 2011, 21, 16467.	6.7	40
102	Designed 4,8-Connected Metal–Organic Frameworks Based on Tetrapodal Octacarboxylate Ligands. Crystal Growth and Design, 2011, 11, 4284-4287.	3.0	43
103	Pore-size tuning in double-pillared metal–organic frameworks containing cadmium clusters. CrystEngComm, 2011, 13, 3321.	2.6	49
104	Homochiral Nickel Coordination Polymers Based on Salen(Ni) Metalloligands: Synthesis, Structure, and Catalytic Alkene Epoxidation. Inorganic Chemistry, 2011, 50, 2191-2198.	4.0	103
105	Porous Anionic, Cationic, and Neutral Metal-Carboxylate Frameworks Constructed from Flexible Tetrapodal Ligands: Syntheses, Structures, Ion-Exchanges, and Magnetic Properties. Inorganic Chemistry, 2011, 50, 2264-2271.	4.0	90
106	Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction. Catalysis Communications, 2011, 14, 27-31.	3.3	162
107	Conjugated Ligands Modulated Sandwich Structures and Luminescence Properties of Lanthanide Metal–Organic Frameworks. Inorganic Chemistry, 2011, 50, 5242-5248.	4.0	114
108	Interpenetrated metal–organic frameworks of self-catenated four-connected mok nets. Chemical Communications, 2011, 47, 5982.	4.1	66

#	Article	IF	CITATIONS
109	Development of a polyoxometallate-based photocatalyst assembled with cucurbit[6]uril via hydrogen bonds for azo dyes degradation. Journal of Hazardous Materials, 2011, 186, 948-951.	12.4	73
110	Monodisperse noble metal nanoparticles stabilized in SBA-15: Synthesis, characterization and application in microwave-assisted Suzuki–Miyaura coupling reaction. Journal of Catalysis, 2010, 270, 268-274.	6.2	108
111	A Series of Lanthanide Metal–Organic Frameworks Based on Biphenylâ€3,4′,5â€ŧricarboxylate: Syntheses, Structures, Luminescence and Magnetic Properties. European Journal of Inorganic Chemistry, 2010, 2010, 3842-3849.	2.0	89
112	Crystal structures and fluorescence of two Cd(II) complexes based on N-(3-carboxyphenyl)iminodiacetic acid and 5-amino isophthailic acid. Journal of Molecular Structure, 2010, 965, 82-88.	3.6	19
113	Syntheses and characterizations of two new pillared-layer coordination polymers constructed from lanthanides and mixed O-donor ligands. Inorganic Chemistry Communication, 2010, 13, 388-391.	3.9	10
114	Homochiral Supramolecular Compounds Constructed from Amino Acid Derivatives: Syntheses, Structures, Chiroptical, and Photoluminescence Properties. Crystal Growth and Design, 2010, 10, 3051-3059.	3.0	28
115	Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands. CrystEngComm, 2010, 12, 660-670.	2.6	126
116	A water-insoluble and visible light induced polyoxometalate-based photocatalyst. Chemical Communications, 2010, 46, 2429.	4.1	143
117	Construction of a trigonal bipyramidal cage-based metal–organic framework with hydrophilic pore surface via flexible tetrapodal ligands. Chemical Communications, 2010, 46, 8439.	4.1	61
118	Rare Case of a Triple-Stranded Molecular Braid in an Organic Cocrystal. Crystal Growth and Design, 2010, 10, 4217-4220.	3.0	18
119	New Metalâ^'Organic Framework with Uninodal 4-Connected Topology Displaying Interpenetration, Self-Catenation, and Second-Order Nonlinear Optical Response. Crystal Growth and Design, 2010, 10, 1489-1491.	3.0	71
120	Rare Earth Metal Oxalatophosphonates: Syntheses, Structure Diversity, and Photoluminescence Properties. Crystal Growth and Design, 2010, 10, 608-617.	3.0	44
121	Preparation and characterization of lanthanide–azo-dye coordination polymers and polymer thin films via layer-by-layer depositions. Dalton Transactions, 2010, 39, 10967.	3.3	7
122	Crystal structures and luminescent properties of two cadmium complexes containing the N,N′-bis-(4-pyridylmethyl) piperazine ligand. Journal of Molecular Structure, 2009, 938, 316-321.	3.6	11
123	A new 3-fold interpenetration of diamond-like network constructed from polyoxometalate building blocks. Inorganic Chemistry Communication, 2009, 12, 605-607.	3.9	15
124	Conformation control of a flexible 1,4-phenylenediacetate ligand in coordination complexes: a rigidity-modulated strategy. CrystEngComm, 2009, 11, 583-588.	2.6	63
125	Iron(II) complexes ligated by 2-imino-1,10-phenanthrolines: Preparation and catalytic behavior toward ethylene oligomerization. Journal of Molecular Catalysis A, 2007, 269, 85-96.	4.8	84
126	Construction of Functionâ€Oriented Core–Shell Nanostructures in Hydrogenâ€Bonded Organic Frameworks for Nearâ€Infraredâ€Responsive Bacterial Inhibition. Angewandte Chemie, 0, , .	2.0	7

#	Article	IF	CITATIONS
127	Charge transfer in mixed and segregated stacks of tetrathiafulvalene, tetrathianaphthalene and naphthalene diimide: a structural, spectroscopic and computational study. New Journal of Chemistry, 0, , .	2.8	0