
Chao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1962461/publications.pdf Version: 2024-02-01

CHAOLIN

#	Article	IF	CITATIONS
1	Visible Light Gold Nanocluster Photocatalyst: Selective Aerobic Oxidation of Amines to Imines. ACS Catalysis, 2017, 7, 3632-3638.	11.2	165
2	Observation of Body entered Cubic Gold Nanocluster. Angewandte Chemie - International Edition, 2015, 54, 9826-9829.	13.8	147
3	C–O Functionalization of α-Oxyboronates: A Deoxygenative <i>gem</i> -Diborylation and <i>gem</i> -Silylborylation of Aldehydes and Ketones. Journal of the American Chemical Society, 2017, 139, 5257-5264.	13.7	142
4	Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nature Communications, 2018, 9, 744.	12.8	132
5	Au ₃₈ S ₂ (SAdm) ₂₀ Photocatalyst for One-Step Selective Aerobic Oxidations. ACS Catalysis, 2017, 7, 3368-3374.	11.2	106
6	Tailored and Integrated Production of Functional Cellulose Nanocrystals and Cellulose Nanofibrils via Sustainable Formic Acid Hydrolysis: Kinetic Study and Characterization. ACS Sustainable Chemistry and Engineering, 2019, 7, 9449-9463.	6.7	78
7	One-Pot Synthesis of Au ₁₁ (PPh ₂ Py) ₇ Br ₃ for the Highly Chemoselective Hydrogenation of Nitrobenzaldehyde. ACS Catalysis, 2016, 6, 92-99.	11.2	75
8	Comparative Evaluation of the Efficient Conversion of Corn Husk Filament and Corn Husk Powder to Valuable Materials via a Sustainable and Clean Biorefinery Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 1327-1336.	6.7	73
9	Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohydrate Polymers, 2021, 251, 116975.	10.2	72
10	Dual Functionalization of αâ€Monoboryl Carbanions through Deoxygenative Enolization with Carboxylic Acids. Angewandte Chemie - International Edition, 2018, 57, 5501-5505.	13.8	67
11	Efficient Aerobic Oxidation of Glucose to Gluconic Acid over Activated Carbonâ€&upported Gold Clusters. ChemSusChem, 2017, 10, 1976-1980.	6.8	63
12	Recent Advances in Homogeneous Carbonylation Using CO ₂ as CO Surrogate. Chinese Journal of Chemistry, 2018, 36, 353-362.	4.9	63
13	Structure of the Au _{23â^'<i>x</i>} Ag _{<i>x</i>} (Sâ€Adm) ₁₅ Nanocluster and Its Application for Photocatalytic Degradation of Organic Pollutants. Angewandte Chemie - International Edition, 2019, 58, 11335-11339.	13.8	63
14	Catalytic CO Oxidation Using Bimetallic M _{<i>x</i>} Au _{25–<i>x</i>} Clusters: A Combined Experimental and Computational Study on Doping Effects. Journal of Physical Chemistry C, 2016, 120, 10261-10267.	3.1	58
15	Aminoazanium of DABCO: An Amination Reagent for Alkyl and Aryl Pinacol Boronates. Angewandte Chemie - International Edition, 2020, 59, 2745-2749.	13.8	53
16	Controlled growth of molecularly pure Au25(SR)18 and Au38(SR)24 nanoclusters from the same polydispersed crude product. Science China Chemistry, 2012, 55, 2359-2365.	8.2	52
17	Effect of regeneration solvent on the characteristics of regenerated cellulose from lithium bromide trihydrate molten salt. Cellulose, 2020, 27, 9243-9256.	4.9	48
18	Synthesis of Secondary and Tertiary Alkyl Boronic Esters by <i>gem</i> â€Carboborylation: Carbonyl Compounds as Bis(electrophile) Equivalents. Angewandte Chemie - International Edition, 2018, 57, 10318-10322.	13.8	44

Снао Liu

#	Article	IF	CITATIONS
19	Chemodivergent transformations of amides using gem-diborylalkanes as pro-nucleophiles. Nature Communications, 2020, 11, 3113.	12.8	44
20	One-pot synthesis of Au ₁₄₄ (SCH ₂ Ph) ₆₀ nanoclusters and their catalytic application. Journal of Materials Chemistry A, 2015, 3, 20167-20173.	10.3	43
21	Stereoselective Synthesis of Trisubstituted Vinylboronates from Ketone Enolates Triggered by 1,3â€Metalate Rearrangement of Lithium Enolates. Angewandte Chemie - International Edition, 2019, 58, 15813-15818.	13.8	38
22	Hydrothermal Synthesis of a CaNb ₂ O ₆ Hierarchical Micro/Nanostructure and Its Enhanced Photocatalytic Activity. European Journal of Inorganic Chemistry, 2010, 2010, 1275-1282.	2.0	37
23	Selective hydrogenation of the C bond in α,β-unsaturated aldehydes and ketones over ultra-small Pd–Au clusters. Nanoscale, 2016, 8, 18626-18629.	5.6	37
24	Structural isomer and high-yield of Pt1Ag28 nanocluster via one-pot chemical wet method. Nano Research, 2019, 12, 309-314.	10.4	36
25	[AuAg ₂₆ (SR) ₁₈ S] ^{â^`} Nanocluster: Open Shell Structure and High Faradaic Efficiency in Electrochemical Reduction of CO ₂ to CO. Journal of Physical Chemistry Letters, 2021, 12, 552-557.	4.6	36
26	Computational Investigation of the Role Played by Rhodium(V) in the Rhodium(III)â€Catalyzed <i>ortho</i> â€Bromination of Arenes. Chemistry - A European Journal, 2017, 23, 2690-2699.	3.3	32
27	Cooperation between an alcoholic proton and boryl species in the catalytic <i>gem</i> -hydrodiborylation of carboxylic esters to access 1,1-diborylalkanes. Organic Chemistry Frontiers, 2019, 6, 900-907.	4.5	30
28	One-step rapid synthesis, crystal structure and 3.3 microseconds long excited-state lifetime of Pd1Ag28 nanocluster. Nano Research, 2020, 13, 366-372.	10.4	30
29	Extraction and Separation of Rare Earth Elements from Nitrate Medium with Mixtures ofsec-Octylphenoxyacetic Acid and 2,2′-Bipyridylâ€. Journal of Chemical & Engineering Data, 2010, 55, 4281-4284.	1.9	26
30	Surface modification of adamantane-terminated gold nanoclusters using cyclodextrins. Physical Chemistry Chemical Physics, 2016, 18, 23358-23364.	2.8	26
31	Toward understanding the growth mechanism of Aun(SR)m nanoclusters: effect of solvent on cluster size. RSC Advances, 2013, 3, 9778.	3.6	25
32	Synthesis of ultrasmall platinum nanoparticles and structural relaxation. Journal of Colloid and Interface Science, 2014, 423, 123-128.	9.4	24
33	Efficient synthesis of Au ₉₉ (SR) ₄₂ nanoclusters. Nanoscale, 2015, 7, 5987-5990.	5.6	23
34	Cluster-to-cluster transformation among Au ₆ , Au ₈ and Au ₁₁ nanoclusters. Dalton Transactions, 2018, 47, 7487-7491.	3.3	22
35	Thermally robust silica-enclosed Au 25 nanocluster and its catalysis. Chinese Journal of Catalysis, 2016, 37, 1787-1793.	14.0	20
36	Efficient palladium-catalyzed C(sp ²)–H activation towards the synthesis of fluorenes. New Journal of Chemistry, 2016, 40, 9030-9033.	2.8	19

Снао Liu

#	Article	IF	CITATIONS
37	α-C–H borylation of secondary alcohols <i>via</i> Ru/Fe relay catalysis: building a platform for alcoholic C–H/C–O functionalizations. Chemical Communications, 2019, 55, 11884-11887.	4.1	18
38	Aminoazanium of DABCO: An Amination Reagent for Alkyl and Aryl Pinacol Boronates. Angewandte Chemie, 2020, 132, 2767-2771.	2.0	14
39	Halogenâ€Adjusted Chemoselective Synthesis of Fluorene Derivatives with Positionâ€Controlled Substituents. Chemistry - an Asian Journal, 2016, 11, 211-215.	3.3	13
40	Recent advances in the synthesis and transformation of <i>gem</i> -borylsilylalkanes. New Journal of Chemistry, 2021, 45, 14847-14854.	2.8	13
41	Structure of the Au _{23â^'<i>x</i>} Ag _{<i>x</i>} (Sâ€Adm) ₁₅ Nanocluster and Its Application for Photocatalytic Degradation of Organic Pollutants. Angewandte Chemie, 2019, 131, 11457-11461.	2.0	10
42	Synthesis and structure of Au19Ag4(S-Adm)15 nanocluster: Polymorphs and optical properties. Chinese Chemical Letters, 2021, 32, 565-568.	9.0	10
43	Reversible conversion between phosphine protected Au ₆ and Au ₈ nanoclusters under oxidative/reductive conditions. Nanoscale, 2017, 9, 2424-2427.	5.6	9
44	Correlating Kernel–Shell Structures with Optical Properties of Pt ₁ Ag ₂₄ and Pt ₁ Ag ₁₄ Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 2194-2201.	3.1	9
45	Influence of drying methods on the structure and properties of cellulose formate and its application as a reducing agent. International Journal of Biological Macromolecules, 2021, 170, 397-405.	7.5	9
46	Double Carbonylation Using Glyoxal (HCOCOH): A Practical Copperâ€Promoted Synthesis of Isatins from Primary and Secondary Anilines. Advanced Synthesis and Catalysis, 2017, 359, 3484-3489.	4.3	7
47	Amelioration of Physical Properties and Printability of Paper Coated with N-methylated Chitosan. Scientific Reports, 2020, 10, 9936.	3.3	7
48	The doping engineering and crystal structure of rod-like Au8Ag17 nanoclusters. Journal of Chemical Physics, 2021, 155, 074301.	3.0	7
49	Deoxygenative Transformation of Carbonyl and Carboxyl Compounds Using gem-Diborylalkanes. Synlett, 2019, 30, 1105-1110.	1.8	6
50	A Pd-catalyzed optional approach for the synthesis of dibenzothiophenes. Organic and Biomolecular Chemistry, 2018, 16, 2083-2087.	2.8	5
51	Controlled synthesis of pure Au ₂₅ (2-Nap) ₁₈ and Au ₃₆ (2-Nap) ₂₄ nanoclusters from 2-(diphenylphosphino)pyridine protected Au nanoclusters. RSC Advances, 2016, 6, 105166-105170.	3.6	4
52	Cu 2+ â€Induced Structural Isomers: Effect of Foreign Metal Ions on the Structure and Properties of Silver Nanoclusters. Chemistry - an Asian Journal, 2019, 14, 972-976.	3.3	4
53	Impact of ammonium sulfite-based sequential pretreatment combinations on two distinct saccharifications of wheat straw. RSC Advances, 2020, 10, 17129-17142.	3.6	4
54	Synthesis and Optical Properties of Unique Pt ₁ Ag ₂₄ Nanoclusters with Mixed Exterior Motif Structures. Inorganic Chemistry, 2021, 60, 10167-10172.	4.0	4

Снао Liu

#	Article	IF	CITATIONS
55	Atomically precise structures of Pt ₂ (S-Adam) ₄ (PPh ₃) ₂ complexes and catalytic application in propane dehydrogenation. Nanoscale, 2022, 14, 2482-2489.	5.6	3
56	Highly Efficient Synthesis of Au130(SPh-Br)50 Nanocluster. Chemical Research in Chinese Universities, 2018, 34, 719-722.	2.6	2
57	The synthesis and structure of the [PdAu ₁₃ (PPh ₃) ₃ (SR) ₇] ⁺ nanocluster. Nanoscale, 2020, 12, 11825-11829.	5.6	1
58	Location of Cu Atom in Auâ€Based Nanocluster and Its Optical Properties. European Journal of Inorganic Chemistry, 2021, 2021, 2281-2283.	2.0	1