
Mikhail Varensov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1962154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere, 2018, 9, 50.	2.3	65
2	Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city. Atmospheric Chemistry and Physics, 2018, 18, 17573-17587.	4.9	53
3	A high density urban temperature network deployed in several cities of Eurasian Arctic. Environmental Research Letters, 2018, 13, 075007.	5.2	47
4	Impact of Urban Canopy Parameters on a Megacity's Modelled Thermal Environment. Atmosphere, 2020, 11, 1349.	2.3	32
5	Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast). Izvestiya - Atmospheric and Oceanic Physics, 2015, 51, 992-998.	0.9	27
6	Projecting urban heat island effect on the spatial-temporal variation of microbial respiration in urban soils of Moscow megalopolis. Science of the Total Environment, 2021, 786, 147457.	8.0	27
7	Modeling of thermal comfort conditions inside the urban boundary layer during Moscow's 2010 summer heat wave (case-study). Urban Climate, 2014, 10, 563-572.	5.7	26
8	Object-oriented approach to urban canyon analysis and its applications in meteorological modeling. Urban Climate, 2015, 13, 122-139.	5.7	21
9	Effects of Climate Change and Heterogeneity of Local Climates оn the Development of Malaria Parasite (Plasmodium vivax) in Moscow Megacity Region. International Journal of Environmental Research and Public Health, 2019, 16, 694.	2.6	19
10	Spatial structure and temporal variability of a surface urban heat island in cold continental climate. Theoretical and Applied Climatology, 2019, 137, 2513-2528.	2.8	17
11	Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities. Atmosphere, 2021, 12, 237.	2.3	17
12	Spatial Patterns of Human Thermal Comfort Conditions in Russia: Present Climate and Trends. Weather, Climate, and Society, 2020, 12, 629-642.	1.1	17
13	Intraurban social risk and mortality patterns during extreme heat events: A case study of Moscow, 2010-2017. Health and Place, 2020, 66, 102429.	3.3	16
14	Development of the High-resolution Operational System for Numerical Prediction of Weather and Severe Weather Events for the Moscow Region. Russian Meteorology and Hydrology, 2020, 45, 455-465.	1.3	16
15	Role of spring soil moisture in the formation of large-scale droughts in the East European Plain in 2002 and 2010. Izvestiya - Atmospheric and Oceanic Physics, 2015, 51, 405-411.	0.9	15
16	Modeling an Urban Heat Island during Extreme Frost in Moscow in January 2017. Izvestiya - Atmospheric and Oceanic Physics, 2019, 55, 389-406.	0.9	14
17	Quantifying Local and Mesoscale Drivers of the Urban Heat Island of Moscow with Reference and Crowdsourced Observations. Frontiers in Environmental Science, 2021, 9, .	3.3	14
18	High-Resolution Temperature Mapping by Geostatistical Kriging with External Drift from Large-Eddy Simulations. Monthly Weather Review, 2020, 148, 1029-1048.	1.4	13

Mikhail Varensov

#	Article	IF	CITATIONS
19	Balloons and Quadcopters: Intercomparison of Two Low-Cost Wind Profiling Methods. Atmosphere, 2021, 12, 380.	2.3	13
20	Arctic Sea Ice Decline in the 2010s: The Increasing Role of the Ocean—Air Heat Exchange in the Late Summer. Atmosphere, 2019, 10, 184.	2.3	12
21	An enhanced integrated approach to knowledgeable high-resolution environmental quality assessment. Environmental Science and Policy, 2021, 122, 1-13.	4.9	12
22	Computation of City-descriptive Parameters for High-resolution Numerical Weather Prediction in Moscow Megacity in the Framework of the COSMO Model. Russian Meteorology and Hydrology, 2020, 45, 515-521.	1.3	12
23	The System for Numerical Prediction of Weather Events (Including Severe Ones) for Moscow Megacity: The Prototype Development. Russian Meteorology and Hydrology, 2019, 44, 729-738.	1.3	11
24	Mesoscale Atmospheric Modeling of Extreme Velocities over the Sea of Okhotsk and Sakhalin. Izvestiya - Atmospheric and Oceanic Physics, 2018, 54, 322-326.	0.9	8
25	A new approach to study the long-term urban heat island evolution using time-dependent spectroscopy. Urban Climate, 2021, 40, 101026.	5.7	8
26	Introducing a New Detailed Long-Term COSMO-CLM Hindcast for the Russian Arctic and the First Results of Its Evaluation. Atmosphere, 2021, 12, 350.	2.3	6
27	Urban heat islands in the Arctic cities: an updated compilation of in situ and remote-sensing estimations. Advances in Science and Research, 0, 18, 51-57.	1.0	6
28	Evaluation of outdoor thermal comfort conditions in northern Russia over 30-year period: Arkhangelsk region. Geographica Pannonica, 2020, 24, 252-260.	1.3	6
29	Arctic cities as an anthropogenic object: a preliminary approach through urban heat islands. Polar Journal, 2019, 9, 402-423.	0.8	4
30	Summer thermal comfort in Russian big cities (1966-2015). Geographica Pannonica, 2021, 25, 35-41.	1.3	4
31	Creation of a long-term high-resolution hydrometeorological archive for the Russian Arctic: methodology and first results. IOP Conference Series: Earth and Environmental Science, 2019, 386, 012039.	0.3	2
32	Climate Change and Extreme Weather Events in the Moscow Agglomeration. Russian Meteorology and Hydrology, 2020, 45, 498-507.	1.3	2
33	Mesoscale atmospheric modelling technology as a tool for creating a long-term meteorological dataset. IOP Conference Series: Earth and Environmental Science, 2017, 96, 012004.	0.3	1
34	Modeling Technology for Assessment of Summer Thermal Comfort Conditions of Arctic City on Microscale: Application for City of Apatity. Springer Geography, 2020, , 66-75.	0.4	1
35	A new detailed long-term hydrometeorological dataset: first results of extreme characteristics estimations for the Russian Arctic seas. IOP Conference Series: Earth and Environmental Science, 0, 611, 012044.	0.3	1
36	Experience in the determining the building area using satellite images for the purposes of meteorological modeling (case of Moscow city). InterCarto InterGIS, 2020, 26, 298-312.	0.4	1

#	Article	IF	CITATIONS
37	Satellite mapping of air temperature under polar night conditions. Geo-Spatial Information Science, 0, , 1-12.	5.3	1
38	Studying Moscow urban heat island using satellite images and mesoscale climatic modelling. InterCarto InterGIS, 2021, 27, 183-195.	0.4	0