Enrico Piconcelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1962028/publications.pdf

Version: 2024-02-01

57631 54797 7,786 154 44 84 citations h-index g-index papers 154 154 154 3691 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Massive molecular outflows and evidence for AGN feedback from CO observations. Astronomy and Astrophysics, 2014, 562, A21.	2.1	667
2	Quasar feedback revealed by giant molecular outflows. Astronomy and Astrophysics, 2010, 518, L155.	2.1	461
3	The XMM-Newton view of PG quasars. Astronomy and Astrophysics, 2005, 432, 15-30.	2.1	373
4	AGN wind scaling relations and the co-evolution of black holes and galaxies. Astronomy and Astrophysics, 2017, 601, A143.	2.1	349
5	Evidence of strong quasar feedback in the early Universe. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 425, L66-L70.	1.2	312
6	The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astronomy and Astrophysics, 2015, 583, A99.	2.1	218
7	X-ray spectral survey with XMM–Newton of a complete sample of nearby Seyfert galaxies. Astronomy and Astrophysics, 2006, 446, 459-470.	2.1	188
8	BLOWIN' IN THE WIND: BOTH "NEGATIVE―AND "POSITIVE―FEEDBACK IN AN OBSCURED HIGH- <i>>z</i> QUASAR. Astrophysical Journal, 2015, 799, 82.	1.6	175
9	Very extended cold gas, star formation and outflows in the halo of a bright quasar at <i>z</i> > 6. Astronomy and Astrophysics, 2015, 574, A14.	2.1	169
10	Ionised outflows in <i>z</i> ~ 2.4 quasar host galaxies. Astronomy and Astrophysics, 2015, 580, A102.	2.1	161
11	Faint high-redshift AGN in the <i>Chandra</i> deep field south: the evolution of the AGN luminosity function and black hole demography. Astronomy and Astrophysics, 2012, 537, A16.	2.1	136
12	<i>Chandra</i> unveils a binary active galactic nucleus in Mrk 463. Monthly Notices of the Royal Astronomical Society, 2008, 386, 105-110.	1.6	134
13	Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astronomy and Astrophysics, 2020, 636, A73.	2.1	134
14	The WISSH quasars project. Astronomy and Astrophysics, 2017, 598, A122.	2.1	133
15	X-shooter reveals powerful outflows in z $\hat{a}^{1}/4$ 1.5 X-ray selected obscured quasi-stellar objects. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2394-2417.	1.6	128
16	The physics and the structure of the quasar-driven outflow in MrkÂ231. Astronomy and Astrophysics, 2012, 543, A99.	2.1	127
17	Evidence for a multizone warm absorber in theXMM-Newtonspectrum of Markarian 304. Monthly Notices of the Royal Astronomical Society, 2004, 351, 161-168.	1.6	121
18	The quest for dual and binary supermassive black holes: A multi-messenger view. New Astronomy Reviews, 2019, 86, 101525.	5.2	119

#	Article	IF	CITATIONS
19	Fast outflows and star formation quenching in quasar host galaxies. Astronomy and Astrophysics, 2016, 591, A28.	2.1	116
20	HOW COMPLEX IS THE OBSCURATION IN ACTIVE GALACTIC NUCLEI? NEW CLUES FROM THE <i>SUZAKU </i> MONITORING OF THE X-RAY ABSORBERS IN NGC 7582. Astrophysical Journal, 2009, 695, 781-787.	1.6	105
21	FERO: Finding extreme relativistic objects. Astronomy and Astrophysics, 2010, 524, A50.	2.1	104
22	A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?. Astrophysical Journal, 2010, 717, 209-222.	1.6	101
23	The XMM-Newton and BeppoSAX view of the Ultra Luminous Infrared Galaxy MKNÂ231. Astronomy and Astrophysics, 2004, 420, 79-88.	2.1	94
24	The WISSH quasars project. Astronomy and Astrophysics, 2018, 617, A81.	2.1	86
25	Compton thick AGN in the XMM-COSMOS survey. Astronomy and Astrophysics, 2015, 573, A137.	2.1	77
26	MAGNUM survey: A MUSE- <i>Chandra</i> resolved view on ionized outflows and photoionization in the Seyfert galaxy NGC1365. Astronomy and Astrophysics, 2018, 619, A74.	2.1	75
27	AGN host galaxy mass function in COSMOS. Astronomy and Astrophysics, 2016, 588, A78.	2.1	73
28	Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA. Astronomy and Astrophysics, 2018, 612, A29.	2.1	70
29	The MBH-M* relation for X-ray-obscured, red QSOs at 1.2Â<ÂzÂ<Â2.6. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2077-2091.	1.6	68
30	Widespread QSO-driven outflows in the early Universe. Astronomy and Astrophysics, 2019, 630, A59.	2.1	67
31	The WISSH quasars project. Astronomy and Astrophysics, 2017, 608, A51.	2.1	66
32	TheXMM-Newtonview of PG quasars. Astronomy and Astrophysics, 2005, 435, 449-457.	2.1	65
33	Revealing X-ray obscured quasars in SWIRE sources with extreme mid-IR/optical flux ratios. Astronomy and Astrophysics, 2009, 498, 67-81.	2.1	61
34	SUPER. Astronomy and Astrophysics, 2020, 642, A147.	2.1	61
35	The WISSH quasars project. Astronomy and Astrophysics, 2017, 604, A67.	2.1	58
36	Tracing outflows in the AGN forbidden region with SINFONI. Astronomy and Astrophysics, 2016, 592, A148.	2.1	55

#	Article	IF	CITATIONS
37	<i>CHANDRA</i> HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE. Astrophysical Journal, 2012, 752, 49.	1.6	53
38	On the discovery of fast molecular gas in the UFO/BAL quasar APM 08279+5255 at <i>>z</i> = 3.912. Astronomy and Astrophysics, 2017, 608, A30.	2.1	53
39	The gentle monster PDS 456. Astronomy and Astrophysics, 2019, 628, A118.	2.1	53
40	A hard X-ray view of giga-hertz peaked spectrum radio galaxies. Astronomy and Astrophysics, 2006, 446, 87-96.	2.1	53
41	XMM–Newton observations of ultraluminous X–ray sources in nearby galaxies. Astronomy and Astrophysics, 2002, 392, 817-825.	2.1	52
42	ALMA observations of cold molecular gas in AGN hosts at z $\hat{a}^{1/4}$ 1.5 \hat{a} \in evidence of AGN feedback?. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4205-4215.	1.6	48
43	NGC 6240: extended CO structures and their association with shocked gas. Astronomy and Astrophysics, 2013, 549, A51.	2.1	48
44	DISCOVERY OF STRONG IRON KÎ \pm EMITTING COMPTON THICK QUASARS AT $\langle i \rangle z \langle j \rangle = 2.5$ AND 2.9. Astrophysical Journal Letters, 2011, 729, L4.	3.0	44
45	The X-ray view of giga-hertz peaked spectrum radio galaxies. Astronomy and Astrophysics, 2009, 501, 89-102.	2.1	44
46	Witnessing Galaxy Assembly at the Edge of the Reionization Epoch*. Astrophysical Journal Letters, 2018, 863, L29.	3.0	43
47	Evidence for feedback in action from the molecular gas content in the <i>>z</i> < 1.6 outflowing QSO XID2028. Astronomy and Astrophysics, 2015, 578, A11.	2.1	43
48	XMM-Newton broad-band observations of NGCÂ7582:N $_{\text{mathsf}}$ variations and fading out of the active nucleus. Astronomy and Astrophysics, 2007, 466, 855-863.	2.1	43
49	The early stage of a cosmic collision? XMM-Newton unveils two obscured AGN in the galaxy pair ESO509-IG066. Astronomy and Astrophysics, 2005, 429, L9-L12.	2.1	42
50	AnXMM–Newtonstudy of the hard X–ray sky. Astronomy and Astrophysics, 2003, 412, 689-705.	2.1	41
51	WITNESSING THE KEY EARLY PHASE OF QUASAR EVOLUTION: AN OBSCURED ACTIVE GALACTIC NUCLEUS PAIR IN THE INTERACTING GALAXY IRAS 20210+1121. Astrophysical Journal Letters, 2010, 722, L147-L151.	3.0	41
52	High resolution mapping of CO(1–0) in NGC 6240. Astronomy and Astrophysics, 2013, 558, A87.	2.1	41
53	The properties of the clumpy torus and BLR in the polar-scattered Seyfert 1 galaxy ESO 323–G77 through X-ray absorption variability. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1776-1790.	1.6	41
54	The WISSH quasars project. Astronomy and Astrophysics, 2021, 645, A33.	2.1	41

#	Article	IF	CITATIONS
55	The hidden quasar nucleus of a WISE-selected, hyperluminous, dust-obscured galaxy at <i>z</i> ~ 2.3. Astronomy and Astrophysics, 2015, 574, L9.	2.1	39
56	AGN feedback on molecular gas reservoirs in quasars at $\langle i \rangle z \langle i \rangle \sim 2.4$. Astronomy and Astrophysics, 2017, 605, A105.	2.1	36
57	SUPER. Astronomy and Astrophysics, 2018, 620, A82.	2.1	36
58	Molecular gas content in obscured AGN at <i>z</i> > 1. Astronomy and Astrophysics, 2018, 619, A90.	2.1	35
59	The dense molecular gas in the <i>z</i> â^¼â€" 6 QSO SDSS J231038.88+185519.7 resolved by ALMA. and Astrophysics, 2018, 619, A39.	Astronomy 2.1	y ₃₄
60	Multiphase quasar-driven outflows in PG 1114+445. Astronomy and Astrophysics, 2019, 627, A121.	2.1	34
61	A multiwavelength map of the nuclear region of NGC 7582. Monthly Notices of the Royal Astronomical Society, 2007, 374, 697-702.	1.6	33
62	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A5.	2.1	33
63	Suppression of black-hole growth by strong outflows at redshifts 5.8–6.6. Nature, 2022, 605, 244-247.	13.7	33
64	X-ray spectral variability in PG 1535+547: the changing look of a "soft X-ray weak―AGN. Astronomy and Astrophysics, 2008, 483, 137-149.	2.1	28
65	Galaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars. Astronomy and Astrophysics, 2020, 644, A15.	2.1	27
66	High-resolution X-ray spectroscopy and imaging of Mrk 573. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	26
67	<i>NuSTAR</i> reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267. Astronomy and Astrophysics, 2016, 590, A77.	2.1	26
68	The XMM-Newton view of three X-ray weak quasars: Iron emission and strong ionized absorption. Astronomy and Astrophysics, 2005, 433, 455-465.	2.1	26
69	The WISSH quasars project. Astronomy and Astrophysics, 2020, 635, A157.	2.1	25
70	SUPER. Astronomy and Astrophysics, 2021, 646, A96.	2.1	25
71	SUPER. Astronomy and Astrophysics, 2020, 644, A175.	2.1	25
72	On the nature of the absorber in IRAS $\hat{a} \in f09104+4109$: the X-ray and mid-infrared view. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2068-2077.	1.6	24

#	Article	IF	Citations
73	Exploring the spectral properties of faint hard X-ray sources with \$vec XMM\$-\$vec Newton\$. Astronomy and Astrophysics, 2002, 394, 835-849.	2.1	23
74	Outflows in the Disks of Active Galaxies. Astrophysical Journal, 2019, 877, 74.	1.6	23
75	The XMM-Newton view of IRAS 09104+4109: evidence for a changing-look Type 2 quasar?. Astronomy and Astrophysics, 2007, 473, 85-89.	2.1	22
76	The NGCÂ3341 minor merger: a panchromatic view of the active galactic nucleus in a dwarf companion. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2335-2344.	1.6	22
77	NuSTAR View of the Black Hole Wind in the Galaxy Merger IRAS F11119+3257. Astrophysical Journal, 2017, 850, 151.	1.6	22
78	The X-ray spectral signatures from the complex circumnuclear regions in the Compton thick AGN NGCÂ424. Astronomy and Astrophysics, 2011, 526, A36.	2.1	21
79	X-ray spectroscopy of the $z\hat{A}=\hat{A}6.4$ quasar SDSS J1148+5251. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3590-3597.	1.6	21
80	A long hard look at the minimum state of PG 2112+059 withÂXMM-Newton. Astronomy and Astrophysics, 2010, 512, A75.	2.1	21
81	The WISSH quasars project. Astronomy and Astrophysics, 2020, 635, L5.	2.1	20
82	BAT AGN Spectroscopic Survey XXVII: scattered X-Ray radiation in obscured active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2021, 504, 428-443.	1.6	20
83	XMM-Newton observation of the deep minimum state of PG 2112+059. Astronomy and Astrophysics, 2007, 474, 431-441.	2.1	19
84	Disclosing the properties of low-redshift dual AGN through XMM-Newton and SDSS spectroscopy. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1639-1655.	1.6	19
85	A Study of X-Ray Emission of Galaxies Hosting Molecular Outflows (MOX Sample). Astrophysical Journal, 2018, 868, 10.	1.6	19
86	The WISSH quasars project. Astronomy and Astrophysics, 2018, 617, A82.	2.1	19
87	Heavy absorption and soft X-ray emission lines in the XMM-Newton spectrum of the type 2 radio-loud quasar 3C 234. Astronomy and Astrophysics, 2008, 480, 671-676.	2.1	19
88	NuSTAR Measurement of Coronal Temperature in Two Luminous, High-redshift Quasars. Astrophysical Journal Letters, 2019, 875, L20.	3.0	18
89	The WISSH quasars project. Astronomy and Astrophysics, 2019, 630, A111.	2.1	18
90	SUPER. Astronomy and Astrophysics, 2021, 654, L8.	2.1	18

#	Article	IF	Citations
91	Gas reservoir of a hyper-luminous quasar at <i>z</i> = 2.6. Astronomy and Astrophysics, 2014, 565, A91.	2.1	18
92	The hyperluminous Compton-thick <i>z</i> $\hat{a}^{1/4}$ 2 quasar nucleus of the hot DOG W1835+4355 observed by <i>NuSTAR</i> . Astronomy and Astrophysics, 2018, 618, A28.	2.1	18
93	Does the X-ray emission of the luminous quasar RBS 1124 originate in a mildly relativistic outflowing corona?. Monthly Notices of the Royal Astronomical Society, 2010, 401, 1315-1324.	1.6	17
94	Probing AGN triggering mechanisms through the starburstiness of the host galaxies. Astronomy and Astrophysics, 2013, 559, A56.	2.1	17
95	Simultaneous <i>XMM-Newton</i> and HST-COS observation of 1H 0419–577. Astronomy and Astrophysics, 2014, 563, A95.	2.1	17
96	NuSTAR spectral analysis of two bright Seyfert 1 galaxies: MCG +8-11-11 and NGC 6814. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3104-3112.	1.6	17
97	Simultaneous <i>XMM-Newton </i> and HST-COS observation of 1H0419-577. Astronomy and Astrophysics, 2013, 556, A94.	2.1	16
98	XMM-Newton discovery of soft X-ray absorption in the high-z superluminous Blazar RBSÂ315. Astronomy and Astrophysics, 2005, 442, L53-L56.	2.1	15
99	X-ray spectroscopy of the Compton-thick Seyfert 2 ESO 138Ââ^'ÂG1. Astronomy and Astrophysics, 2011, 534, A126.	2.1	15
100	Suzaku reveals X-ray continuum piercing the nuclear absorber in Markarian 231. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1185-1190.	1.6	15
101	Peering Through the Dust. II. XMM-Newton Observations of Two Additional FIRST-2MASS Red Quasars. Astrophysical Journal, 2017, 847, 116.	1.6	15
102	The importance of special relativistic effects in modelling ultra-fast outflows. Astronomy and Astrophysics, 2020, 633, A55.	2.1	15
103	X-ray spectroscopic survey of highly accreting AGN. Astronomy and Astrophysics, 2022, 657, A57.	2.1	15
104	An X-ray underluminous cluster of galaxies in the 4Ms CDFS observations. Astronomy and Astrophysics, 2011, 530, A27.	2.1	14
105	An X-ray variable absorber within the broad line region in Fairall 51. Astronomy and Astrophysics, 2015, 578, A96.	2.1	14
106	Constraining the geometry of the nuclear wind in PDS 456 using a novel emission model. Astronomy and Astrophysics, 2018, 619, A149.	2.1	14
107	4U 1344-60: a bright intermediate Seyfert galaxy atz= 0.012 with a relativistic Fe K\$mathsf{alpha}\$ emission line. Astronomy and Astrophysics, 2006, 453, 839-846.	2.1	14
108	Location and energetics of the ultra-fast outflow in PG 1448+273. Astronomy and Astrophysics, 2021, 645, A118.	2.1	13

#	Article	IF	CITATIONS
109	Detection of blueshifted emission and absorption and a relativistic iron line in the X-ray spectrum of ESOâ€∫323â^'G077 ^{â~} . Monthly Notices of the Royal Astronomical Society, 2008, 391, 1359-1368.	1.6	12
110	XMM-Newton first X-ray detection of the low-ionization broad absorption line quasar PG 1700+518. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2600-2606.	1.6	12
111	A high spectral resolution map of the nuclear emitting regions of NGC 7582. Astronomy and Astrophysics, 2017, 600, A135.	2.1	12
112	Speed limits for radiation-driven SMBH winds. Astronomy and Astrophysics, 2021, 646, A111.	2.1	12
113	The XMM-Newton spectrum of the high-zoptically-obscured QSO RX J1343.4+0001: a classic radio quiet QSO. Astronomy and Astrophysics, 2005, 432, 835-839.	2.1	11
114	FBQS J1644+2619: multiwavelength properties and its place in the class of \hat{l}^3 -ray emitting Narrow Line Seyfert 1s. Monthly Notices of the Royal Astronomical Society, 2018, 476, 43-55.	1.6	10
115	SUPER. Astronomy and Astrophysics, 2021, 654, A90.	2.1	10
116	XMM-Newton view of the double-peaked Fe Kα complex in E1821+643. Astronomy and Astrophysics, 2007, 461, 917-922.	2.1	10
117	XMM-Newton view of galaxy pairs: activation of quiescent black holes?. Astronomy and Astrophysics, 2007, 469, 881-889.	2.1	9
118	Extreme warm absorber variability in the Seyfert galaxy MrkÂ704. Astronomy and Astrophysics, 2011, 533, A1.	2.1	9
119	The <scp>XXL</scp> survey: First results and future. Astronomische Nachrichten, 2017, 338, 334-341.	0.6	9
120	Restframe UV-to-optical spectroscopy of APM 08279+5255. Astronomy and Astrophysics, 2018, 617, A118.	2.1	9
121	Probing black hole accretion in quasar pairs at high redshift. Monthly Notices of the Royal Astronomical Society, 2018, 477, 780-790.	1.6	9
122	Variable broad lines and outflow in the weak blazar PBC J2333.9â^2343. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4634-4640.	1.6	9
123	On the peculiar properties of the narrow-line quasar PG 1543+489. Monthly Notices of the Royal Astronomical Society, 2008, 388, 761-769.	1.6	8
124	The broad-band X-ray spectrum of the Seyfert 1 galaxy, MCG+8-11-11. Astronomy and Astrophysics, 2010, 522, A64.	2.1	8
125	THE <i>XMM-NEWTON</i> SPECTRUM OF A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE: AN ELUSIVE INVERTED P-CYGNI PROFILE. Astrophysical Journal, 2013, 778, 62.	1.6	8
126	Absorption at the dust sublimation radius and the dichotomy between X-ray and optical classification in the Seyfert galaxy H0557-385a~ Monthly Notices of the Royal Astronomical Society, 2014, 443, 1788-1801.	1.6	8

#	Article	IF	Citations
127	Multiple AGN in the crowded field of the compact group SDSS J0959+1259. Monthly Notices of the Royal Astronomical Society, 2015, 453, 214-221.	1.6	8
128	Deep X-ray spectroscopy and imaging of the Seyfert 2 galaxy, ESO 138-G001. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2155-2162.	1.6	8
129	Broadband X-ray observations of four gamma-ray narrow-line Seyfert 1 galaxies. Astronomy and Astrophysics, 2019, 632, A120.	2.1	8
130	Unveiling the radio counterparts of two binary AGN candidates: J1108+0659 and J1131-0204. Astronomy and Astrophysics, 2016, 588, A102.	2.1	8
131	An <i>XMM–Newton</i> study of active–inactive galaxy pairs. Monthly Notices of the Royal Astronomical Society, 2021, 504, 393-405.	1.6	7
132	The IBISCO survey. Astronomy and Astrophysics, 2021, 655, A25.	2.1	7
133	INVESTIGATING THE COMPLEX X-RAY SPECTRUM OF A BROAD-LINE 2MASS RED QUASAR: <i> XMM-NEWTON </i> OBSERVATION OF FTM 0830+3759. Astrophysical Journal, 2010, 710, 992-1002.	1.6	6
134	The properties of the X-ray corona in the distant ($\langle i \rangle z \langle i \rangle = 3.91$) quasar APM 08279+5255. Astronomy and Astrophysics, 2022, 662, A98.	2.1	6
135	The Voyage of Metals in the Universe from Cosmological to Planetary Scales: the need for a Very High-Resolution, High Throughput Soft X-ray Spectrometer. Experimental Astronomy, 2021, 51, 1013-1041.	1.6	5
136	The active nucleus of the ULIRG IRAS F00183–7111 viewed by <i>NuSTAR</i> . Astronomy and Astrophysics, 2017, 606, A117.	2.1	4
137	X-ray obscuration from a variable ionized absorber in PG 1114+445. Astronomy and Astrophysics, 2021, 654, A32.	2.1	4
138	The Ultra Luminous Infrared Galaxy Mrk 231: new clues from BeppoSAX and XMM-Newton. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 153-156.	0.5	3
139	Active galaxy 4U 1344-60: did the relativistic line disappear?. Astronomy and Astrophysics, 2012, 545, A148.	2.1	3
140	<i>XMM-NEWTON</i> OBSERVATIONS OF THREE INTERACTING LUMINOUS INFRARED GALAXIES. Astrophysical Journal, 2014, 787, 40.	1.6	3
141	Chandra imaging of the ~kpc extended outflow in 1H 0419-577. Astronomy and Astrophysics, 2017, 608, A115.	2.1	3
142	Multiple AGN activity during the BCG assembly of XDCPJ0044.0-2033 at z \hat{a}^4 1.6. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2719-2733.	1.6	2
143	Capturing dual AGN activity and kiloparsec-scale outflows in IRAS 20210+1121. Astronomy and Astrophysics, 2021, 654, A154.	2.1	2
144	The role of SPICA-like missions and the Origins Space Telescope in the quest for heavily obscured AGN and synergies with Athena. Publications of the Astronomical Society of Australia, 2021, 38, .	1.3	2

#	Article	lF	CITATIONS
145	Relativistic Fe Kα features in the XMM-Newton spectrum of the intermediate Seyfert galaxy 4U 1344-60. Astronomische Nachrichten, 2006, 327, 1059-1062.	0.6	1
146	Unveiling multiple <scp>AGN</scp> activity in galaxy mergers. Astronomische Nachrichten, 2017, 338, 262-268.	0.6	1
147	<i>NuSTAR</i> reveals that the heavily obscured nucleus of NGC 2785 was the contaminant of IRAS 09104+4109 in the <i>Beppo</i> SAX/PDS hard X-rays. Astronomy and Astrophysics, 2018, 619, A16.	2.1	1
148	XMMâ€Newton view of the relativistic Fe Kα feature in the intermediate Seyfert galaxy 4U 1344â€60. , 2007, , .		O
149	Simbol-X Core Science in a Context. , 2009, , .		0
150	High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IRâ^•Optical Colors. , 2009, , .		0
151	The IR to X-rays SED of the Heavily Obscured Quasar IRAS 09104+4109., 2009, , .		0
152	The Large-scale Structure in the Chandra Deep Field South. Proceedings of the International Astronomical Union, 2010, 6, 333-336.	0.0	0
153	How complex is the obscuration in AGN?. , 2010, , .		0
154	Type 2 Quasars at the heart of dust-obscured galaxies (DOGs) at high z ., 2010, , .		0