Wojciech Radzki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1961563/publications.pdf

Version: 2024-02-01

		933447	794594
19	528	10	19
papers	citations	h-index	g-index
19	19	19	789
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Use of α-Lactalbumin and Caseinoglycomacropeptide as Biopeptide Precursors and as Functional Additives in Milk Beverages Fermented by L. helveticus. International Journal of Food Science, 2021, 2021, 1-15.	2.0	4
2	Effect of Whey Protein Concentrate on Physicochemical, Sensory and Antioxidative Properties of High-Protein Fat-Free Dairy Desserts. Applied Sciences (Switzerland), 2020, 10, 7064.	2.5	12
3	Functional and Technological Potential of Whey Protein Isolate in Production of Milk Beverages Fermented by New Strains of Lactobacillus helveticus. Applied Sciences (Switzerland), 2020, 10, 7089.	2.5	9
4	Processed Fruiting Bodies of Lentinus edodes as a Source of Biologically Active Polysaccharides. Applied Sciences (Switzerland), 2020, 10, 470.	2.5	21
5	Influence of onion skin powder on nutritional and quality attributes of wheat pasta. PLoS ONE, 2020, 15, e0227942.	2.5	32
6	Impact of processing on polysaccharides obtained from button mushroom (<i>Agaricus bisporus</i>). International Journal of Food Science and Technology, 2019, 54, 1405-1412.	2.7	14
7	Lactic Acid Fermentation of Edible Mushrooms: Tradition, Technology, Current State of Research: A Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 655-669.	11.7	24
8	The Impact of Drying of Wild-Growing Mushrooms on the Content and Antioxidant Capacity of Water-Soluble Polysaccharides. International Journal of Medicinal Mushrooms, 2019, 21, 393-400.	1.5	11
9	Reinforcement of the Antioxidative Properties of Chickpea Beverages Through Fermentation Carried Out by Probiotic Strain Lactobacillus plantarum 299v. Journal of Pure and Applied Microbiology, 2019, 13, 01-12.	0.9	10
10	Technologia sous-vide – innowacyjny sposób obróbki cieplnej Å⅓ywnoÅ›ci. Å»ywność, 2018, 116, 34-44.	0.1	1
11	General combining ability and heterosis regarding the phytochemical properties in strawberry (<i>FragariaÂ</i> A—Â <i>ananassa</i>) hybrids. Plant Breeding, 2017, 136, 111-118.	1.9	4
12	Vitamin D2 Stability During the Refrigerated Storage of Ultraviolet B-Treated Cultivated Culinary-Medicinal Mushrooms. International Journal of Medicinal Mushrooms, 2017, 19, 249-255.	1.5	7
13	Hybrid performance and heterosis in strawberry (<i>FragariaÂ</i> ×Â <i>ananassa</i> Duchesne), regarding acidity, soluble solids and dry matter content in fruits. Plant Breeding, 2016, 135, 232-238.	1.9	6
14	Study on vitamin D2 stability in dried mushrooms during drying and storage. Food Chemistry, 2016, 199, 203-209.	8.2	55
15	Effect of processing on the content and biological activity of polysaccharides from Pleurotus ostreatus mushroom. LWT - Food Science and Technology, 2016, 66, 27-33.	5.2	50
16	The eff ect of addition of selected milk protein preparations on the growth of Lactobacillus acidophilus and physicochemical properties of fermented milk. Acta Scientiarum Polonorum, Technologia Alimentaria, 2016, 15, 29-36.	0.3	7
17	Evaluation of the potential use of probiotic strain Lactobacillus plantarum 299v in lactic fermentation of button mushroom fruiting bodies. Acta Scientiarum Polonorum, Technologia Alimentaria, 2016, 15, 399-407.	0.3	16
18	Antioxidant Capacity and Polyphenolic Content of Dried Wild Edible Mushrooms from Poland. International Journal of Medicinal Mushrooms, 2014, 16, 65-75.	1.5	35

#	Article	IF	CITATIONS
19	Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 2013, 104, 321-330.	1.7	210