Amaury Lendasse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/196149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Handwriting features based detection of fake signatures. , 2021, , .		5
2	Website Classification from Webpage Renders. Proceedings in Adaptation, Learning and Optimization, 2021, , 41-50.	1.5	10
3	Scikit-ELM: An Extreme Learning Machine Toolbox for Dynamic and Scalable Learning. Proceedings in Adaptation, Learning and Optimization, 2021, , 69-78.	1.5	16
4	Validating Untrained Human Annotations Using Extreme Learning Machines. Proceedings in Adaptation, Learning and Optimization, 2021, , 89-98.	1.5	0
5	Investigating Feasibility of Active Learning with Image Content on Mobile Devices Using ELM. Proceedings in Adaptation, Learning and Optimization, 2021, , 134-140.	1.5	0
6	Extreme Learning Machines for Signature Verification. Proceedings in Adaptation, Learning and Optimization, 2021, , 31-40.	1.5	8
7	High-Performance ELM for Memory Constrained Edge Computing Devices with Metal Performance Shaders. Proceedings in Adaptation, Learning and Optimization, 2021, , 79-88.	1.5	6
8	A machine-learning-enhanced hierarchical multiscale method for bridging from molecular dynamics to continua. Neural Computing and Applications, 2020, 32, 14359-14373.	3.2	14
9	A Novel ELM Ensemble for Time Series Prediction. Proceedings in Adaptation, Learning and Optimization, 2020, , 283-291.	1.5	4
10	Feature Bagging and Extreme Learning Machines: Machine Learning with Severe Memory Constraints. , 2020, , .		6
11	A modified Lanczos Algorithm for fast regularization of extreme learning machines. Neurocomputing, 2020, 414, 172-181.	3.5	17
12	Using machine learning to identify top predictors for nurses' willingness to report medication errors. Array, 2020, 8, 100049.	2.5	0
13	Embedded spectral descriptors: learning the point-wise correspondence metric via Siamese neural networks. Journal of Computational Design and Engineering, 2020, 7, 18-29.	1.5	9
14	Local receptive fields based extreme learning machine with hybrid filter kernels for image classification. Multidimensional Systems and Signal Processing, 2019, 30, 1149-1169.	1.7	6
15	Per-sample prediction intervals for extreme learning machines. International Journal of Machine Learning and Cybernetics, 2019, 10, 991-1001.	2.3	5
16	ELM-SOM+: A continuous mapping for visualization. Neurocomputing, 2019, 365, 147-156.	3.5	10
17	Towards Developing Visual Statistical Cues for Biodiversity, Abundance, Biomass around Mariana Trench in an Embeddable Smart Module. , 2019, , .		1
18	Exploring Seafloor Stretching in Mariana Trench Arc via the Squeeze and Excitation network with		1

High-resolution Multibeam Bathymetric Survey. , 2019, , .

#	Article	IF	CITATIONS
19	A Framework for Privacy Quantification: Measuring the Impact of Privacy Techniques Through Mutual Information, Distance Mapping, and Machine Learning. Cognitive Computation, 2019, 11, 241-261.	3.6	2
20	Distance Estimation for Incomplete Data by Extreme Learning Machine. Proceedings in Adaptation, Learning and Optimization, 2019, , 203-209.	1.5	1
21	Deformable Surface Registration with Extreme Learning Machines. Proceedings in Adaptation, Learning and Optimization, 2019, , 304-316.	1.5	4
22	Extreme Learning Tree. Proceedings in Adaptation, Learning and Optimization, 2019, , 181-185.	1.5	1
23	Generating Word Embeddings from an Extreme Learning Machine for Sentiment Analysis and Sequence Labeling Tasks. Cognitive Computation, 2018, 10, 625-638.	3.6	42
24	Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables. Cognitive Computation, 2018, 10, 464-477.	3.6	1
25	Adaptive and online network intrusion detection system using clustering and Extreme Learning Machines. Journal of the Franklin Institute, 2018, 355, 1752-1779.	1.9	62
26	Gaussian derivative models and ensemble extreme learning machine for texture image classification. Neurocomputing, 2018, 277, 53-64.	3.5	34
27	Parameter-free image segmentation with SLIC. Neurocomputing, 2018, 277, 228-236.	3.5	28
28	Discriminant document embeddings with an extreme learning machine for classifying clinical narratives. Neurocomputing, 2018, 277, 129-138.	3.5	22
29	Data-Enabled Computational Multiscale Method in Materials Science and Engineering. , 2018, , .		Ο
30	Embedded Online Fish Detection and Tracking System via YOLOv3 and Parallel Correlation Filter. , 2018, , .		23
31	ELM-SOM: A Continuous Self-Organizing Map for Visualization. , 2018, , .		8
32	Anomaly-Based Intrusion Detection Using Extreme Learning Machine and Aggregation of Network Traffic Statistics in Probability Space. Cognitive Computation, 2018, 10, 848-863.	3.6	44
33	Data Fusion Using OPELM for Low-Cost Sensors in AUV. Proceedings in Adaptation, Learning and Optimization, 2018, , 273-285.	1.5	Ο
34	Incremental ELMVIS for Unsupervised Learning. Proceedings in Adaptation, Learning and Optimization, 2018, , 183-193.	1.5	0
35	Predicting Huntington's Disease: Extreme Learning Machine with Missing Values. Proceedings in Adaptation, Learning and Optimization, 2018, , 195-206.	1.5	5
36	Learning Flow Characteristics Distributions with ELM for Distributed Denial of Service Detection and Mitigation. Proceedings in Adaptation, Learning and Optimization, 2018, , 129-143.	1.5	3

#	Article	IF	CITATIONS
37	Brute-force Missing Data Extreme Learning Machine for Predicting Huntington's Disease. , 2017, , .		3
38	Adding reliability to ELM forecasts by confidence intervals. Neurocomputing, 2017, 219, 232-241.	3.5	5
39	A depth estimation model from a single underwater image with non-uniform illumination correction. , 2017, , .		4
40	Underwater image segmentation with co-saliency detection and local statistical active contour model. , 2017, , .		6
41	Underwater object tracking strategy via multi-scale retinex and partial least squares analysis. , 2017, , .		1
42	Solve Classification Tasks with Probabilities. Statistically-Modeled Outputs. Lecture Notes in Computer Science, 2017, , 293-305.	1.0	1
43	On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces. Lecture Notes in Computer Science, 2017, , 3-13.	1.0	0
44	Underwater 3D object reconstruction with multiple views in video stream via structure from motion. , 2016, , .		8
45	Combined nonlinear visualization and classification: ELMVIS++C. , 2016, , .		3
46	Underwater non-rigid 3D shape reconstruction via structure from motion for fish ethology research. , 2016, , .		2
47	A new application of machine learning in health care. , 2016, , .		3
48	Underwater image enhancement strategy with virtual retina model and image quality assessment. , 2016, , .		1
49	Underwater scene search scheme via similarity measure and sparse representation for autonomous underwater vehicle. , 2016, , .		0
50	A R-SOM Analysis of the Link between Financial Market Conditions and a Systemic Risk Index Based on ICA-Factors of Systemic Risk Measures. , 2016, , .		1
51	ELMVIS+: Fast nonlinear visualization technique based on cosine distance and extreme learning machines. Neurocomputing, 2016, 205, 247-263.	3.5	20
52	Underwater object detection with efficient shadow-removal for side scan sonar images. , 2016, , .		11
53	Seafloor visual saliency evaluation for navigation with BoW and DBSCAN. , 2016, , .		2
54	Comparison of combining methods using Extreme Learning Machines under small sample scenario. Neurocomputing, 2016, 174, 4-17.	3.5	10

#	Article	IF	CITATIONS
55	Extreme learning machine for missing data using multiple imputations. Neurocomputing, 2016, 174, 220-231.	3.5	90
56	Evaluating Confidence Intervals for ELM Predictions. Proceedings in Adaptation, Learning and Optimization, 2016, , 413-422.	1.5	1
57	Manifold learning in local tangent space via extreme learning machine. Neurocomputing, 2016, 174, 18-30.	3.5	20
58	Brain MRI morphological patterns extraction tool based on Extreme Learning Machine and majority vote classification. Neurocomputing, 2016, 174, 344-351.	3.5	19
59	Singular Value Decomposition update and its application to (Inc)-OP-ELM. Neurocomputing, 2016, 174, 99-108.	3.5	10
60	HSR: L 1/2-regularized sparse representation for fast face recognition using hierarchical feature selection. Neural Computing and Applications, 2016, 27, 305-320.	3.2	6
61	ELMVIS+: Improved Nonlinear Visualization Technique Using Cosine Distance and Extreme Learning Machines. Proceedings in Adaptation, Learning and Optimization, 2016, , 357-369.	1.5	5
62	Probabilistic Methods for Multiclass Classification Problems. Proceedings in Adaptation, Learning and Optimization, 2016, , 385-397.	1.5	1
63	On Mutual Information over Non-Euclidean Spaces, Data Mining and Data Privacy Levels. Proceedings in Adaptation, Learning and Optimization, 2016, , 371-383.	1.5	0
64	A fast sonar-based benthic object recognition model via extreme learning machine. , 2015, , .		0
65	A novel adaptive restoration for underwater image quality degradation. , 2015, , .		Ο
66	Underwater image sparse representation based on bag-of-words and compressed sensing. , 2015, , .		3
67	A shadow-removal based saliency map for point feature detection of underwater objects. , 2015, , .		0
68	A rapid weighted median filter based on saliency region for underwater image denoising. , 2015, , .		0
69	Extreme Learning Machine on High Dimensional and Large Data Applications. Mathematical Problems in Engineering, 2015, 2015, 1-2.	0.6	5
70	Minimal Learning Machine: A novel supervised distance-based approach for regression and classification. Neurocomputing, 2015, 164, 34-44.	3.5	51
71	Auto-detection of Anisakid larvae in Cod Fillets by UV fluorescent imaging with OS-ELM. , 2015, , .		0
72	Extreme Learning Machines for Multiclass Classification: Refining Predictions with Gaussian Mixture Models. Lecture Notes in Computer Science, 2015, , 153-164.	1.0	10

#	Article	IF	CITATIONS
73	MD-ELM: Originally Mislabeled Samples Detection using OP-ELM Model. Neurocomputing, 2015, 159, 242-250.	3.5	13
74	Arbitrary Category Classification of Websites Based on Image Content. IEEE Computational Intelligence Magazine, 2015, 10, 30-41.	3.4	20
75	SOM-ELM—Self-Organized Clustering using ELM. Neurocomputing, 2015, 165, 238-254.	3.5	18
76	High-Performance Extreme Learning Machines: A Complete Toolbox for Big Data Applications. IEEE Access, 2015, 3, 1011-1025.	2.6	283
77	Meme representations for game agents. World Wide Web, 2015, 18, 215-234.	2.7	3
78	LARSEN-ELM: Selective ensemble of extreme learning machines using LARS for blended data. Neurocomputing, 2015, 149, 285-294.	3.5	17
79	ROS-ELM: A Robust Online Sequential Extreme Learning Machine for Big Data Analytics. Proceedings in Adaptation, Learning and Optimization, 2015, , 325-344.	1.5	5
80	Fast Face Recognition Via Sparse Coding and Extreme Learning Machine. Cognitive Computation, 2014, 6, 264.	3.6	21
81	Fast Feature Selection in a GPU Cluster Using the Delta Test. Entropy, 2014, 16, 854-869.	1.1	11
82	RMSE-ELM: Recursive Model Based Selective Ensemble of Extreme Learning Machines for Robustness Improvement. Mathematical Problems in Engineering, 2014, 2014, 1-12.	0.6	1
83	Variable selection for regression problems using Gaussian mixture models to estimate mutual information. , 2014, , .		1
84	Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing, 2014, 128, 207-216.	3.5	81
85	Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing, 2014, 128, 273-284.	3.5	51
86	Long-term time series prediction using OP-ELM. Neural Networks, 2014, 51, 50-56.	3.3	138
87	Fast Image Recognition Based on Independent Component Analysis and Extreme Learning Machine. Cognitive Computation, 2014, 6, 405-422.	3.6	17
88	Bankruptcy prediction using Extreme Learning Machine and financial expertise. Neurocomputing, 2014, 128, 296-302.	3.5	114
89	The delta test: The 1-NN estimator as a feature selection criterion. , 2014, , .		5
90	A Two-Stage Methodology Using K-NN and False-Positive Minimizing ELM for Nominal Data Classification. Cognitive Computation, 2014, 6, 432-445.	3.6	32

#	Article	IF	CITATIONS
91	Mixture of Gaussians for distance estimation with missing data. Neurocomputing, 2014, 131, 32-42.	3.5	52
92	Ensemble delta test-extreme learning machine (DT-ELM) for regression. Neurocomputing, 2014, 129, 153-158.	3.5	30
93	Feature selection for nonlinear models with extreme learning machines. Neurocomputing, 2013, 102, 111-124.	3.5	69
94	3D object recognition based on a geometrical topology model and extreme learning machine. Neural Computing and Applications, 2013, 22, 427-433.	3.2	23
95	Extending the Minimal Learning Machine for Pattern Classification. , 2013, , .		1
96	Regularized extreme learning machine for regression with missing data. Neurocomputing, 2013, 102, 45-51.	3.5	211
97	Distance estimation in numerical data sets with missing values. Information Sciences, 2013, 240, 115-128.	4.0	38
98	Extreme Learning Machines [Trends & amp; Controversies]. IEEE Intelligent Systems, 2013, 28, 30-59.	4.0	329
99	Extreme Learning Machine: A Robust Modeling Technique? Yes!. Lecture Notes in Computer Science, 2013, , 17-35.	1.0	17
100	Data Preprocessing and Model Design for Medicine Problems. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-1.	0.7	1
101	Minimal Learning Machine: A New Distance-Based Method for Supervised Learning. Lecture Notes in Computer Science, 2013, , 408-416.	1.0	12
102	Fast variable selection for memetracker phrases time series prediction. , 2012, , .		0
103	Adaptive kernel smoothing regression for spatio-temporal environmental datasets. Neurocomputing, 2012, 90, 59-65.	3.5	3
104	Adaptive kernel smoothing regression using vector quantization. , 2011, , .		1
105	Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers. , 2011, , .		16
106	Local linear regression for soft-sensor design with application to an industrial deethanizer. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 2839-2844.	0.4	6
107	GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing, 2011, 74, 2430-2437.	3.5	194
108	TROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing, 2011, 74, 2413-2421.	3.5	257

#	Article	IF	CITATIONS
109	Climate-related challenges in long-term management of SĀkylĀk PyhĀkāvi (SW Finland). Hydrobiologia, 2011, 660, 49-58.	1.0	21
110	On the Curse of Dimensionality in Supervised Learning of Smooth Regression Functions. Neural Processing Letters, 2011, 34, 133-154.	2.0	5
111	A continuous regression function for the Delaunay calibration method. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 194-199.	0.4	Ο
112	Residual variance estimation using a nearest neighbor statistic. Journal of Multivariate Analysis, 2010, 101, 811-823.	0.5	38
113	Evolving fuzzy optimally pruned extreme learning machine for regression problems. Evolving Systems, 2010, 1, 43-58.	2.4	47
114	X-SOM and L-SOM: A double classification approach for missing value imputation. Neurocomputing, 2010, 73, 1103-1108.	3.5	44
115	New method for instance or prototype selection using mutual information in time series prediction. Neurocomputing, 2010, 73, 2030-2038.	3.5	42
116	Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation. Fuzzy Sets and Systems, 2010, 161, 471-497.	1.6	33
117	A boundary corrected expansion of the moments of nearest neighbor distributions. Random Structures and Algorithms, 2010, 37, 223-247.	0.6	8
118	OP-KNN: Method and Applications. Advances in Artificial Neural Systems, 2010, 2010, 1-6.	1.0	3
119	Effect of different detrending approaches on computational intelligence models of time series. , 2010, , .		7
120	Evolving fuzzy Optimally Pruned Extreme Learning Machine: A comparative analysis. , 2010, , .		5
121	An improved methodology for filling missing values in spatiotemporal climate data set. Computational Geosciences, 2010, 14, 55-64.	1.2	16
122	OP-ELM: Optimally Pruned Extreme Learning Machine. IEEE Transactions on Neural Networks, 2010, 21, 158-162.	4.8	657
123	Long-term prediction of time series by combining direct and MIMO strategies. , 2009, , .		37
124	Adaptive Ensemble Models of Extreme Learning Machines for Time Series Prediction. Lecture Notes in Computer Science, 2009, , 305-314.	1.0	63
125	A SOM-based approach to estimating product properties from spectroscopic measurements. Neurocomputing, 2009, 73, 71-79.	3.5	5
126	Residual variance estimation in machine learning. Neurocomputing, 2009, 72, 3692-3703.	3.5	27

#	Article	IF	CITATIONS
127	Efficient Parallel Feature Selection for Steganography Problems. Lecture Notes in Computer Science, 2009, , 1224-1231.	1.0	11
128	On the statistical estimation of Rényi entropies. , 2009, , .		6
129	Delaunay Tessellation and Topological Regression: An Application to Estimating Product Properties from Spectroscopic Measurements. Computer Aided Chemical Engineering, 2009, 27, 1179-1184.	0.3	1
130	Reliable Steganalysis Using a Minimum Set of Samples and Features. Eurasip Journal on Information Security, 2009, 2009, 1-13.	2.2	11
131	Sparse Linear Combination of SOMs for Data Imputation: Application to Financial Database. Lecture Notes in Computer Science, 2009, , 290-297.	1.0	5
132	Mutual Information Based Initialization of Forward-Backward Search for Feature Selection in Regression Problems. Lecture Notes in Computer Science, 2009, , 1-9.	1.0	2
133	RCGA-S/RCGA-SP Methods to Minimize the Delta Test for Regression Tasks. Lecture Notes in Computer Science, 2009, , 359-366.	1.0	3
134	On Nonparametric Residual Variance Estimation. Neural Processing Letters, 2008, 28, 155-167.	2.0	37
135	Gaussian basis functions for chemometrics. Journal of Chemometrics, 2008, 22, 701-707.	0.7	4
136	Wavelength selection using the measure of topological relevance on the selfâ€organizing map. Journal of Chemometrics, 2008, 22, 610-620.	0.7	8
137	Long-term prediction of time series using NNE-based projection and OP-ELM. , 2008, , .		16
138	xftsp: A tool for time series prediction by means of fuzzy inference systems. , 2008, , .		5
139	Bounds on the mean power-weighted nearest neighbour distance. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464, 2293-2301.	1.0	26
140	Fuzzy inference based autoregressors for time series prediction using nonparametric residual variance estimation. , 2008, , .		6
141	Minimising the delta test for variable selection in regression problems. International Journal of High Performance Systems Architecture, 2008, 1, 269.	0.2	36
142	OP-ELM: Theory, Experiments and a Toolbox. Lecture Notes in Computer Science, 2008, , 145-154.	1.0	60
143	Variable Scaling for Time Series Prediction: Application to the ESTSP'07 and the NN3 Forecasting Competitions. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	3
144	An empirical dependence mesaures based on residual variance estimation. , 2007, , .		0

An empirical dependence mesaures based on residual variance estimation. , 2007, , . 144

9

#	Article	IF	CITATIONS
145	Time Series Prediction as a Problem of Missing Values: Application to ESTSP2007 and NN3 Competition Benchmarks. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	3
146	State-of-the-Art and Evolution in Public Data Sets and Competitions for System Identification, Time Series Prediction and Pattern Recognition. , 2007, , .		4
147	Methodology for long-term prediction of time series. Neurocomputing, 2007, 70, 2861-2869.	3.5	316
148	Time series prediction competition: The CATS benchmark. Neurocomputing, 2007, 70, 2325-2329.	3.5	36
149	Non-parametric Residual Variance Estimation in Supervised Learning. , 2007, , 63-71.		30
150	Direct and Recursive Prediction of Time Series Using Mutual Information Selection. Lecture Notes in Computer Science, 2005, , 1010-1017.	1.0	42
151	Time series forecasting: Obtaining long term trends with self-organizing maps. Pattern Recognition Letters, 2005, 26, 1795-1808.	2.6	45
152	Vector quantization: a weighted version for time-series forecasting. Future Generation Computer Systems, 2005, 21, 1056-1067.	4.9	26
153	Fast bootstrap methodology for regression model selection. Neurocomputing, 2005, 64, 161-181.	3.5	16
154	Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 2004, 57, 49-76.	3.5	142
155	Double quantization of the regressor space for long-term time series prediction: method and proof of stability. Neural Networks, 2004, 17, 1169-1181.	3.3	16
156	Model Selection with Cross-Validations and Bootstraps — Application to Time Series Prediction with RBFN Models. Lecture Notes in Computer Science, 2003, , 573-580.	1.0	46
157	Forecasting electricity consumption using nonlinear projection and self-organizing maps. Neurocomputing, 2002, 48, 299-311.	3.5	53
158	Dimension reduction of technical indicators for the prediction of financial time series - Application to the BEL20 Market Index. European Journal of Economic and Social Systems, 2001, 15, 31-48.	0.2	18