Amaury Lendasse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/196149/publications.pdf

Version: 2024-02-01

		126907	102487
158	4,893	33	66
papers	citations	h-index	g-index
162	162	162	4108
102	102	102	7100
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	OP-ELM: Optimally Pruned Extreme Learning Machine. IEEE Transactions on Neural Networks, 2010, 21, 158-162.	4.2	657
2	Extreme Learning Machines [Trends & Samp; Controversies]. IEEE Intelligent Systems, 2013, 28, 30-59.	4.0	329
3	Methodology for long-term prediction of time series. Neurocomputing, 2007, 70, 2861-2869.	5.9	316
4	High-Performance Extreme Learning Machines: A Complete Toolbox for Big Data Applications. IEEE Access, 2015, 3, 1011-1025.	4.2	283
5	TROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing, 2011, 74, 2413-2421.	5.9	257
6	Regularized extreme learning machine for regression with missing data. Neurocomputing, 2013, 102, 45-51.	5.9	211
7	GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing, 2011, 74, 2430-2437.	5.9	194
8	Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 2004, 57, 49-76.	5.9	142
9	Long-term time series prediction using OP-ELM. Neural Networks, 2014, 51, 50-56.	5.9	138
10	Bankruptcy prediction using Extreme Learning Machine and financial expertise. Neurocomputing, 2014, 128, 296-302.	5.9	114
11	Extreme learning machine for missing data using multiple imputations. Neurocomputing, 2016, 174, 220-231.	5.9	90
12	Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing, 2014, 128, 207-216.	5.9	81
13	Feature selection for nonlinear models with extreme learning machines. Neurocomputing, 2013, 102, 111-124.	5.9	69
14	Adaptive Ensemble Models of Extreme Learning Machines for Time Series Prediction. Lecture Notes in Computer Science, 2009, , 305-314.	1.3	63
15	Adaptive and online network intrusion detection system using clustering and Extreme Learning Machines. Journal of the Franklin Institute, 2018, 355, 1752-1779.	3.4	62
16	OP-ELM: Theory, Experiments and a Toolbox. Lecture Notes in Computer Science, 2008, , 145-154.	1.3	60
17	Forecasting electricity consumption using nonlinear projection and self-organizing maps. Neurocomputing, 2002, 48, 299-311.	5.9	53
18	Mixture of Gaussians for distance estimation with missing data. Neurocomputing, 2014, 131, 32-42.	5.9	52

#	Article	IF	CITATIONS
19	Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing, 2014, 128, 273-284.	5.9	51
20	Minimal Learning Machine: A novel supervised distance-based approach for regression and classification. Neurocomputing, 2015, 164, 34-44.	5.9	51
21	Evolving fuzzy optimally pruned extreme learning machine for regression problems. Evolving Systems, 2010, 1, 43-58.	3.9	47
22	Model Selection with Cross-Validations and Bootstraps â€" Application to Time Series Prediction with RBFN Models. Lecture Notes in Computer Science, 2003, , 573-580.	1.3	46
23	Time series forecasting: Obtaining long term trends with self-organizing maps. Pattern Recognition Letters, 2005, 26, 1795-1808.	4.2	45
24	X-SOM and L-SOM: A double classification approach for missing value imputation. Neurocomputing, 2010, 73, 1103-1108.	5.9	44
25	Anomaly-Based Intrusion Detection Using Extreme Learning Machine and Aggregation of Network Traffic Statistics in Probability Space. Cognitive Computation, 2018, 10, 848-863.	5.2	44
26	Direct and Recursive Prediction of Time Series Using Mutual Information Selection. Lecture Notes in Computer Science, 2005, , 1010-1017.	1.3	42
27	New method for instance or prototype selection using mutual information in time series prediction. Neurocomputing, 2010, 73, 2030-2038.	5.9	42
28	Generating Word Embeddings from an Extreme Learning Machine for Sentiment Analysis and Sequence Labeling Tasks. Cognitive Computation, 2018, 10, 625-638.	5 . 2	42
29	Residual variance estimation using a nearest neighbor statistic. Journal of Multivariate Analysis, 2010, 101, 811-823.	1.0	38
30	Distance estimation in numerical data sets with missing values. Information Sciences, 2013, 240, 115-128.	6.9	38
31	On Nonparametric Residual Variance Estimation. Neural Processing Letters, 2008, 28, 155-167.	3.2	37
32	Long-term prediction of time series by combining direct and MIMO strategies. , 2009, , .		37
33	Time series prediction competition: The CATS benchmark. Neurocomputing, 2007, 70, 2325-2329.	5.9	36
34	Minimising the delta test for variable selection in regression problems. International Journal of High Performance Systems Architecture, 2008, 1, 269.	0.3	36
35	Gaussian derivative models and ensemble extreme learning machine for texture image classification. Neurocomputing, 2018, 277, 53-64.	5.9	34
36	Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation. Fuzzy Sets and Systems, 2010, 161, 471-497.	2.7	33

3

#	Article	IF	CITATIONS
37	A Two-Stage Methodology Using K-NN and False-Positive Minimizing ELM for Nominal Data Classification. Cognitive Computation, 2014, 6, 432-445.	5.2	32
38	Ensemble delta test-extreme learning machine (DT-ELM) for regression. Neurocomputing, 2014, 129, 153-158.	5.9	30
39	Non-parametric Residual Variance Estimation in Supervised Learning. , 2007, , 63-71.		30
40	Parameter-free image segmentation with SLIC. Neurocomputing, 2018, 277, 228-236.	5.9	28
41	Residual variance estimation in machine learning. Neurocomputing, 2009, 72, 3692-3703.	5.9	27
42	Vector quantization: a weighted version for time-series forecasting. Future Generation Computer Systems, 2005, 21, 1056-1067.	7.5	26
43	Bounds on the mean power-weighted nearest neighbour distance. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464, 2293-2301.	2.1	26
44	3D object recognition based on a geometrical topology model and extreme learning machine. Neural Computing and Applications, 2013, 22, 427-433.	5.6	23
45	Embedded Online Fish Detection and Tracking System via YOLOv3 and Parallel Correlation Filter. , 2018, , .		23
46	Discriminant document embeddings with an extreme learning machine for classifying clinical narratives. Neurocomputing, 2018, 277, 129-138.	5.9	22
47	Climate-related challenges in long-term management of SÃÞylÃÞ PyhÃÞĀÞ (SW Finland). Hydrobiologia, 2011, 660, 49-58.	2.0	21
48	Fast Face Recognition Via Sparse Coding and Extreme Learning Machine. Cognitive Computation, 2014, 6, 264.	5.2	21
49	Arbitrary Category Classification of Websites Based on Image Content. IEEE Computational Intelligence Magazine, 2015, 10, 30-41.	3.2	20
50	ELMVIS+: Fast nonlinear visualization technique based on cosine distance and extreme learning machines. Neurocomputing, 2016, 205, 247-263.	5.9	20
51	Manifold learning in local tangent space via extreme learning machine. Neurocomputing, 2016, 174, 18-30.	5.9	20
52	Brain MRI morphological patterns extraction tool based on Extreme Learning Machine and majority vote classification. Neurocomputing, 2016, 174, 344-351.	5.9	19
53	SOM-ELM—Self-Organized Clustering using ELM. Neurocomputing, 2015, 165, 238-254.	5.9	18
54	Dimension reduction of technical indicators for the prediction of financial time series - Application to the BEL20 Market Index. European Journal of Economic and Social Systems, 2001, 15, 31-48.	0.2	18

#	Article	IF	Citations
55	Extreme Learning Machine: A Robust Modeling Technique? Yes!. Lecture Notes in Computer Science, 2013, , 17-35.	1.3	17
56	Fast Image Recognition Based on Independent Component Analysis and Extreme Learning Machine. Cognitive Computation, 2014, 6, 405-422.	5.2	17
57	LARSEN-ELM: Selective ensemble of extreme learning machines using LARS for blended data. Neurocomputing, 2015, 149, 285-294.	5.9	17
58	A modified Lanczos Algorithm for fast regularization of extreme learning machines. Neurocomputing, 2020, 414, 172-181.	5.9	17
59	Double quantization of the regressor space for long-term time series prediction: method and proof of stability. Neural Networks, 2004, 17, 1169-1181.	5.9	16
60	Fast bootstrap methodology for regression model selection. Neurocomputing, 2005, 64, 161-181.	5.9	16
61	Long-term prediction of time series using NNE-based projection and OP-ELM., 2008,,.		16
62	An improved methodology for filling missing values in spatiotemporal climate data set. Computational Geosciences, 2010, 14, 55-64.	2.4	16
63	Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers. , $2011, \ldots$		16
64	Scikit-ELM: An Extreme Learning Machine Toolbox for Dynamic and Scalable Learning. Proceedings in Adaptation, Learning and Optimization, 2021, , 69-78.	1.6	16
65	A machine-learning-enhanced hierarchical multiscale method for bridging from molecular dynamics to continua. Neural Computing and Applications, 2020, 32, 14359-14373.	5.6	14
66	MD-ELM: Originally Mislabeled Samples Detection using OP-ELM Model. Neurocomputing, 2015, 159, 242-250.	5.9	13
67	Minimal Learning Machine: A New Distance-Based Method for Supervised Learning. Lecture Notes in Computer Science, 2013, , 408-416.	1.3	12
68	Efficient Parallel Feature Selection for Steganography Problems. Lecture Notes in Computer Science, 2009, , 1224-1231.	1.3	11
69	Reliable Steganalysis Using a Minimum Set of Samples and Features. Eurasip Journal on Information Security, 2009, 2009, 1-13.	2.2	11
70	Fast Feature Selection in a GPU Cluster Using the Delta Test. Entropy, 2014, 16, 854-869.	2,2	11
71	Underwater object detection with efficient shadow-removal for side scan sonar images. , 2016, , .		11
72	Extreme Learning Machines for Multiclass Classification: Refining Predictions with Gaussian Mixture Models. Lecture Notes in Computer Science, 2015, , 153-164.	1.3	10

#	Article	IF	Citations
73	Comparison of combining methods using Extreme Learning Machines under small sample scenario. Neurocomputing, 2016, 174, 4-17.	5.9	10
74	Singular Value Decomposition update and its application to (Inc)-OP-ELM. Neurocomputing, 2016, 174, 99-108.	5.9	10
75	ELM-SOM+: A continuous mapping for visualization. Neurocomputing, 2019, 365, 147-156.	5.9	10
76	Website Classification from Webpage Renders. Proceedings in Adaptation, Learning and Optimization, 2021, , 41-50.	1.6	10
77	Embedded spectral descriptors: learning the point-wise correspondence metric via Siamese neural networks. Journal of Computational Design and Engineering, 2020, 7, 18-29.	3.1	9
78	Wavelength selection using the measure of topological relevance on the selfâ€organizing map. Journal of Chemometrics, 2008, 22, 610-620.	1.3	8
79	A boundary corrected expansion of the moments of nearest neighbor distributions. Random Structures and Algorithms, 2010, 37, 223-247.	1.1	8
80	Underwater 3D object reconstruction with multiple views in video stream via structure from motion. , $2016, , .$		8
81	ELM-SOM: A Continuous Self-Organizing Map for Visualization. , 2018, , .		8
82	Extreme Learning Machines for Signature Verification. Proceedings in Adaptation, Learning and Optimization, 2021, , 31-40.	1.6	8
83	Effect of different detrending approaches on computational intelligence models of time series. , 2010, , .		7
84	Fuzzy inference based autoregressors for time series prediction using nonparametric residual variance estimation. , 2008, , .		6
85	On the statistical estimation of Rényi entropies. , 2009, , .		6
86	Local linear regression for soft-sensor design with application to an industrial deethanizer. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 2839-2844.	0.4	6
87	HSR: L 1/2-regularized sparse representation for fast face recognition using hierarchical feature selection. Neural Computing and Applications, 2016, 27, 305-320.	5.6	6
88	Underwater image segmentation with co-saliency detection and local statistical active contour model. , 2017 , , .		6
89	Local receptive fields based extreme learning machine with hybrid filter kernels for image classification. Multidimensional Systems and Signal Processing, 2019, 30, 1149-1169.	2.6	6
90	Feature Bagging and Extreme Learning Machines: Machine Learning with Severe Memory Constraints. , 2020, , .		6

#	Article	IF	CITATIONS
91	High-Performance ELM for Memory Constrained Edge Computing Devices with Metal Performance Shaders. Proceedings in Adaptation, Learning and Optimization, 2021, , 79-88.	1.6	6
92	xftsp: A tool for time series prediction by means of fuzzy inference systems. , 2008, , .		5
93	A SOM-based approach to estimating product properties from spectroscopic measurements. Neurocomputing, 2009, 73, 71-79.	5.9	5
94	Evolving fuzzy Optimally Pruned Extreme Learning Machine: A comparative analysis., 2010,,.		5
95	On the Curse of Dimensionality in Supervised Learning of Smooth Regression Functions. Neural Processing Letters, 2011, 34, 133-154.	3.2	5
96	The delta test: The 1-NN estimator as a feature selection criterion. , 2014, , .		5
97	Extreme Learning Machine on High Dimensional and Large Data Applications. Mathematical Problems in Engineering, 2015, 2015, 1-2.	1.1	5
98	Adding reliability to ELM forecasts by confidence intervals. Neurocomputing, 2017, 219, 232-241.	5.9	5
99	Per-sample prediction intervals for extreme learning machines. International Journal of Machine Learning and Cybernetics, 2019, 10, 991-1001.	3.6	5
100	Handwriting features based detection of fake signatures. , 2021, , .		5
101	ROS-ELM: A Robust Online Sequential Extreme Learning Machine for Big Data Analytics. Proceedings in Adaptation, Learning and Optimization, 2015, , 325-344.	1.6	5
102	ELMVIS+: Improved Nonlinear Visualization Technique Using Cosine Distance and Extreme Learning Machines. Proceedings in Adaptation, Learning and Optimization, 2016, , 357-369.	1.6	5
103	Sparse Linear Combination of SOMs for Data Imputation: Application to Financial Database. Lecture Notes in Computer Science, 2009, , 290-297.	1.3	5
104	Predicting Huntington's Disease: Extreme Learning Machine with Missing Values. Proceedings in Adaptation, Learning and Optimization, 2018, , 195-206.	1.6	5
105	State-of-the-Art and Evolution in Public Data Sets and Competitions for System Identification, Time Series Prediction and Pattern Recognition. , 2007, , .		4
106	Gaussian basis functions for chemometrics. Journal of Chemometrics, 2008, 22, 701-707.	1.3	4
107	A depth estimation model from a single underwater image with non-uniform illumination correction. , 2017, , .		4
108	A Novel ELM Ensemble for Time Series Prediction. Proceedings in Adaptation, Learning and Optimization, 2020, , 283-291.	1.6	4

7

#	Article	IF	CITATIONS
109	Deformable Surface Registration with Extreme Learning Machines. Proceedings in Adaptation, Learning and Optimization, 2019, , 304-316.	1.6	4
110	Variable Scaling for Time Series Prediction: Application to the ESTSP'07 and the NN3 Forecasting Competitions. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	3
111	Time Series Prediction as a Problem of Missing Values: Application to ESTSP2007 and NN3 Competition Benchmarks. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	3
112	OP-KNN: Method and Applications. Advances in Artificial Neural Systems, 2010, 2010, 1-6.	1.0	3
113	Adaptive kernel smoothing regression for spatio-temporal environmental datasets. Neurocomputing, 2012, 90, 59-65.	5.9	3
114	Underwater image sparse representation based on bag-of-words and compressed sensing. , 2015, , .		3
115	Meme representations for game agents. World Wide Web, 2015, 18, 215-234.	4.0	3
116	Combined nonlinear visualization and classification: ELMVIS++C., 2016,,.		3
117	A new application of machine learning in health care. , 2016, , .		3
118	Brute-force Missing Data Extreme Learning Machine for Predicting Huntington's Disease., 2017,,.		3
119	RCGA-S/RCGA-SP Methods to Minimize the Delta Test for Regression Tasks. Lecture Notes in Computer Science, 2009, , 359-366.	1.3	3
120	Learning Flow Characteristics Distributions with ELM for Distributed Denial of Service Detection and Mitigation. Proceedings in Adaptation, Learning and Optimization, 2018, , 129-143.	1.6	3
121	Underwater non-rigid 3D shape reconstruction via structure from motion for fish ethology research. , 2016, , .		2
122	Seafloor visual saliency evaluation for navigation with BoW and DBSCAN., 2016,,.		2
123	A Framework for Privacy Quantification: Measuring the Impact of Privacy Techniques Through Mutual Information, Distance Mapping, and Machine Learning. Cognitive Computation, 2019, 11, 241-261.	5.2	2
124	Mutual Information Based Initialization of Forward-Backward Search for Feature Selection in Regression Problems. Lecture Notes in Computer Science, 2009, , 1-9.	1.3	2
125	Delaunay Tessellation and Topological Regression: An Application to Estimating Product Properties from Spectroscopic Measurements. Computer Aided Chemical Engineering, 2009, 27, 1179-1184.	0.5	1
126	Adaptive kernel smoothing regression using vector quantization. , 2011, , .		1

#	Article	IF	CITATIONS
127	Extending the Minimal Learning Machine for Pattern Classification., 2013,,.		1
128	Data Preprocessing and Model Design for Medicine Problems. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-1.	1.3	1
129	RMSE-ELM: Recursive Model Based Selective Ensemble of Extreme Learning Machines for Robustness Improvement. Mathematical Problems in Engineering, 2014, 2014, 1-12.	1.1	1
130	Variable selection for regression problems using Gaussian mixture models to estimate mutual information. , 2014, , .		1
131	Underwater image enhancement strategy with virtual retina model and image quality assessment. , 2016, , .		1
132	A R-SOM Analysis of the Link between Financial Market Conditions and a Systemic Risk Index Based on ICA-Factors of Systemic Risk Measures. , 2016, , .		1
133	Evaluating Confidence Intervals for ELM Predictions. Proceedings in Adaptation, Learning and Optimization, 2016, , 413-422.	1.6	1
134	Underwater object tracking strategy via multi-scale retinex and partial least squares analysis. , 2017, , .		1
135	Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables. Cognitive Computation, 2018, 10, 464-477.	5.2	1
136	Towards Developing Visual Statistical Cues for Biodiversity, Abundance, Biomass around Mariana Trench in an Embeddable Smart Module. , 2019 , , .		1
137	Exploring Seafloor Stretching in Mariana Trench Arc via the Squeeze and Excitation network with High-resolution Multibeam Bathymetric Survey. , $2019, \ldots$		1
138	Distance Estimation for Incomplete Data by Extreme Learning Machine. Proceedings in Adaptation, Learning and Optimization, 2019, , 203-209.	1.6	1
139	Probabilistic Methods for Multiclass Classification Problems. Proceedings in Adaptation, Learning and Optimization, 2016, , 385-397.	1.6	1
140	Solve Classification Tasks with Probabilities. Statistically-Modeled Outputs. Lecture Notes in Computer Science, 2017, , 293-305.	1.3	1
141	Extreme Learning Tree. Proceedings in Adaptation, Learning and Optimization, 2019, , 181-185.	1.6	1
142	An empirical dependence mesaures based on residual variance estimation. , 2007, , .		0
143	A continuous regression function for the Delaunay calibration method. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 194-199.	0.4	0
144	Fast variable selection for memetracker phrases time series prediction. , 2012, , .		0

#	Article	IF	CITATIONS
145	A fast sonar-based benthic object recognition model via extreme learning machine. , 2015, , .		O
146	A novel adaptive restoration for underwater image quality degradation. , 2015, , .		0
147	A shadow-removal based saliency map for point feature detection of underwater objects. , 2015, , .		О
148	A rapid weighted median filter based on saliency region for underwater image denoising. , 2015, , .		0
149	Auto-detection of Anisakid larvae in Cod Fillets by UV fluorescent imaging with OS-ELM., 2015, , .		O
150	Underwater scene search scheme via similarity measure and sparse representation for autonomous underwater vehicle. , 2016 , , .		0
151	Data-Enabled Computational Multiscale Method in Materials Science and Engineering. , 2018, , .		O
152	Using machine learning to identify top predictors for nurses' willingness to report medication errors. Array, 2020, 8, 100049.	4.0	0
153	On Mutual Information over Non-Euclidean Spaces, Data Mining and Data Privacy Levels. Proceedings in Adaptation, Learning and Optimization, 2016, , 371-383.	1.6	O
154	On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces. Lecture Notes in Computer Science, 2017, , 3-13.	1.3	0
155	Data Fusion Using OPELM for Low-Cost Sensors in AUV. Proceedings in Adaptation, Learning and Optimization, 2018, , 273-285.	1.6	0
156	Incremental ELMVIS for Unsupervised Learning. Proceedings in Adaptation, Learning and Optimization, 2018, , 183-193.	1.6	0
157	Validating Untrained Human Annotations Using Extreme Learning Machines. Proceedings in Adaptation, Learning and Optimization, 2021, , 89-98.	1.6	0
158	Investigating Feasibility of Active Learning with Image Content on Mobile Devices Using ELM. Proceedings in Adaptation, Learning and Optimization, 2021, , 134-140.	1.6	0