Giorgio Lanzuisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1961465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE CHANDRA COSMOS LEGACY SURVEY: OVERVIEW AND POINT SOURCE CATALOG. Astrophysical Journal, 2016, 819, 62.	1.6	348
2	THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS. Astrophysical Journal, 2016, 817, 34.	1.6	242
3	DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING <i>XMM</i> AND <i>CHANDRA</i> -COSMOS SAMPLES. Astrophysical Journal, 2011, 742, 61.	1.6	205
4	THE <i>CHANDRA</i> COSMOS SURVEY. III. OPTICAL AND INFRARED IDENTIFICATION OF X-RAY POINT SOURCES. Astrophysical Journal, Supplement Series, 2012, 201, 30.	3.0	200
5	BLOWIN' IN THE WIND: BOTH "NEGATIVE―AND "POSITIVE―FEEDBACK IN AN OBSCURED HIGH- <i>z</i> QUASAR. Astrophysical Journal, 2015, 799, 82.	1.6	175
6	A statistical relation between the X-ray spectral index and Eddington ratio of active galactic nuclei in deep surveys. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2485-2496.	1.6	155
7	X-shooter reveals powerful outflows in z â^1⁄4 1.5 X-ray selected obscured quasi-stellar objects. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2394-2417.	1.6	128
8	ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES. Astrophysical Journal, 2011, 733, 60.	1.6	116
9	A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?. Astrophysical Journal, 2010, 717, 209-222.	1.6	101
10	THE CHANDRA COSMOS-LEGACY SURVEY: SOURCE X-RAY SPECTRAL PROPERTIES. Astrophysical Journal, 2016, 830, 100.	1.6	93
11	DETAILED SHAPE AND EVOLUTIONARY BEHAVIOR OF THE X-RAY LUMINOSITY FUNCTION OF ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2015, 804, 104.	1.6	86
12	Compton thick AGN in the XMM-COSMOS survey. Astronomy and Astrophysics, 2015, 573, A137.	2.1	77
13	Active galactic nuclei vs. host galaxy properties in the COSMOS field. Astronomy and Astrophysics, 2017, 602, A123.	2.1	75
14	Mapping the average AGN accretion rate in the SFR–M* plane for Herschelâ~selected galaxies at OÂ<ÂzÂâ‰ ¤ 2.5. Monthly Notices of the Royal Astronomical Society, 2015, 449, 373-389.	1.6	73
15	Galaxy-wide outflows in <i>z</i> ~ 1.5 luminous obscured quasars revealed through near-IR slit-resolved spectroscopy. Astronomy and Astrophysics, 2015, 574, A82.	2.1	72
16	Pan-STARRS1 variability of XMM-COSMOS AGN. Astronomy and Astrophysics, 2016, 585, A129.	2.1	71
17	Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA. Astronomy and Astrophysics, 2018, 612, A29.	2.1	70
18	SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE <i>XMM</i> -COSMOS SAMPLE. Astrophysical Journal, 2012, 759, 6.	1.6	67

#	Article	IF	CITATIONS
19	The WISSH quasars project. Astronomy and Astrophysics, 2017, 608, A51.	2.1	66
20	Compton-thick AGNs in the NuSTAR Era. Astrophysical Journal, 2018, 854, 49.	1.6	63
21	Revealing X-ray obscured quasars in SWIRE sources with extreme mid-IR/optical flux ratios. Astronomy and Astrophysics, 2009, 498, 67-81.	2.1	61
22	SUPER. Astronomy and Astrophysics, 2020, 642, A147.	2.1	61
23	An X-ray/SDSS sample. Astronomy and Astrophysics, 2017, 603, A99.	2.1	56
24	The [O iii] emission line luminosity function of optically selected type-2 AGN from zCOSMOS\$^{m,}\$. Astronomy and Astrophysics, 2010, 510, A56.	2.1	55
25	HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. Astrophysical Journal Letters, 2010, 724, L59-L63.	3.0	55
26	The Chandra-COSMOS survey – IV. X-ray spectra of the bright sample. Monthly Notices of the Royal Astronomical Society, 2013, 431, 978-996.	1.6	55
27	Tracing outflows in the AGN forbidden region with SINFONI. Astronomy and Astrophysics, 2016, 592, A148.	2.1	55
28	<i>CHANDRA</i> HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE. Astrophysical Journal, 2012, 752, 49.	1.6	53
29	ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY IN THE <i>XMM </i> COSMOS SURVEY. Astrophysical Journal, 2014, 781, 105.	1.6	51
30	AGN Populations in Large-volume X-Ray Surveys: Photometric Redshifts and Population Types Found in the Stripe 82X Survey. Astrophysical Journal, 2017, 850, 66.	1.6	50
31	THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS. Astrophysical Journal, 2009, 706, 797-809.	1.6	49
32	The Chandra COSMOS Legacy Survey: Compton thick AGN at high redshift. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2578-2592.	1.6	49
33	CLUSTERING OF MODERATE LUMINOSITY X-RAY-SELECTED TYPE 1 AND TYPE 2 AGNS AT <i>Z</i> â ¹ /4 3. Astrophysical Journal, 2014, 796, 4.	1.6	48
34	An X-ray/SDSS sample. Astronomy and Astrophysics, 2017, 606, A96.	2.1	47
35	SINFONI spectra of heavily obscured AGNs in COSMOS: Evidence of outflows in a MIR/O target at <i>z</i> ~ 2.5. Astronomy and Astrophysics, 2015, 583, A72.	2.1	46
36	Evidence for feedback in action from the molecular gas content in the <i>z</i> ~ 1.6 outflowing QSO XID2028. Astronomy and Astrophysics, 2015, 578, A11.	2.1	43

#	Article	IF	CITATIONS
37	A fast ionised wind in a star-forming quasar system at <i>z</i> ~ 1.5 resolved through adaptive optics assisted near-infrared data. Astronomy and Astrophysics, 2016, 588, A58.	2.1	42
38	The MUSE view of He 2-10: No AGN ionization but a sparkling starburst. Astronomy and Astrophysics, 2017, 604, A101.	2.1	42
39	WITNESSING THE KEY EARLY PHASE OF QUASAR EVOLUTION: AN OBSCURED ACTIVE GALACTIC NUCLEUS PAIR IN THE INTERACTING GALAXY IRAS 20210+1121. Astrophysical Journal Letters, 2010, 722, L147-L151.	3.0	41
40	The hidden quasar nucleus of a WISE-selected, hyperluminous, dust-obscured galaxy at <i>z</i> ~ 2.3. Astronomy and Astrophysics, 2015, 574, L9.	2.1	39
41	SUPER. Astronomy and Astrophysics, 2018, 620, A82.	2.1	36
42	FeÂK emission from active galaxies in the COSMOS field. Astronomy and Astrophysics, 2012, 537, A86.	2.1	35
43	THE CHANDRA COSMOS-LEGACY SURVEY: THE zÂ>Â3 SAMPLE. Astrophysical Journal, 2016, 827, 150.	1.6	35
44	Molecular gas content in obscured AGN at <i>z</i> > 1. Astronomy and Astrophysics, 2018, 619, A90.	2.1	35
45	Compton-thick AGN in the 70-month <i>Swift</i> BAT All-Sky Hard X-ray Survey: A Bayesian approach. Astronomy and Astrophysics, 2016, 594, A73.	2.1	34
46	The NuSTAR Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample. Astrophysical Journal, 2018, 854, 33.	1.6	33
47	The 500Âks <i>Chandra</i> observation of the <i>z</i> Â=Â6.31 QSO SDSS J1030Â+Â0524. Astronomy and Astrophysics, 2018, 614, A121.	2.1	33
48	Compton-thick AGNs in the NuSTAR Era. III. A Systematic Study of the Torus Covering Factor. Astrophysical Journal, 2019, 872, 8.	1.6	33
49	Type 2 AGN Host Galaxies in the Chandra-COSMOS Legacy Survey: No Evidence of AGN-driven Quenching. Astrophysical Journal, 2017, 841, 102.	1.6	32
50	HSÂ1700+6416: the first high-redshift unlensed narrow absorption line-QSO showing variable high-velocity outflows. Astronomy and Astrophysics, 2012, 544, A2.	2.1	31
51	Spectral energy distributions of type 1 AGN in XMM-COSMOS – II. Shape evolution. Monthly Notices of the Royal Astronomical Society, 2013, 438, 1288-1304.	1.6	29
52	Galaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars. Astronomy and Astrophysics, 2020, 644, A15.	2.1	27
53	The most obscured AGN in the COSMOS field. Astronomy and Astrophysics, 2015, 578, A120.	2.1	26
54	<i>NuSTAR</i> reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267. Astronomy and Astrophysics, 2016, 590, A77.	2.1	26

#	Article	IF	CITATIONS
55	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2015, 583, A141.	2.1	25
56	SUPER. Astronomy and Astrophysics, 2021, 646, A96.	2.1	25
57	Mock catalogs for the extragalactic X-ray sky: Simulating AGN surveys with ATHENA and with the AXIS probe. Astronomy and Astrophysics, 2020, 642, A184.	2.1	25
58	SUPER. Astronomy and Astrophysics, 2020, 644, A175.	2.1	25
59	On the nature of the absorber in IRAS 09104+4109: the X-ray and mid-infrared view. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2068-2077.	1.6	24
60	Discovery of a galaxy overdensity around a powerful, heavily obscured FRII radio galaxy at <i>z</i> = 1.7: star formation promoted by large-scale AGN feedback?. Astronomy and Astrophysics, 2019, 632, A26.	2.1	24
61	A quasar–galaxy mixing diagram: quasar spectral energy distribution shapes in the optical to near-infrared. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3104-3121.	1.6	23
62	Multi-phase outflows in Mkn 848 observed with SDSS-MaNGA integral field spectroscopy. Astronomy and Astrophysics, 2019, 623, A171.	2.1	23
63	THE CHANDRA COSMOS LEGACY SURVEY: CLUSTERING OF X-RAY-SELECTED AGNs AT 2.9Ââ‰ÂzÂâ‰Â5.5 USIN PHOTOMETRIC REDSHIFT PROBABILITY DISTRIBUTION FUNCTIONS. Astrophysical Journal, 2016, 832, 70.	C 1.6	20
64	Compton-thick AGN in the NuSTAR Era VI: The Observed Compton-thick Fraction in the Local Universe. Astrophysical Journal, 2021, 922, 252.	1.6	19
65	NuSTAR Measurement of Coronal Temperature in Two Luminous, High-redshift Quasars. Astrophysical Journal Letters, 2019, 875, L20.	3.0	18
66	The hyperluminous Compton-thick <i>z</i> â^¼ 2 quasar nucleus of the hot DOG W1835+4355 observed by <i>NuSTAR</i> . Astronomy and Astrophysics, 2018, 618, A28.	2.1	18
67	Multiphase Powerful Outflows Detected in High-z Quasars. Astrophysical Journal, 2021, 920, 24.	1.6	18
68	Searching for highly obscured AGNs in the <i>XMM-Newton</i> serendipitous source catalog. Astronomy and Astrophysics, 2014, 569, A71.	2.1	17
69	The Hunt for Red Quasars: Luminous Obscured Black Hole Growth Unveiled in the Stripe 82 X-Ray Survey. Astrophysical Journal, 2017, 847, 100.	1.6	15
70	Yet another UFO in the X-ray spectrum of a high- <i>z</i> lensed QSO. Astronomy and Astrophysics, 2018, 610, L13.	2.1	15
71	Connecting X-ray nuclear winds with galaxy-scale ionised outflows in two <i>z</i> â^1⁄4  1.5 lensed qu Astronomy and Astrophysics, 2021, 648, A99.	asars. 2.1	15
72	X-ray spectroscopic survey of highly accreting AGN. Astronomy and Astrophysics, 2022, 657, A57.	2.1	15

#	Article	IF	CITATIONS
73	X-ray observations of dust obscured galaxies in the <i>Chandra</i> deep field south. Astronomy and Astrophysics, 2016, 592, A109.	2.1	13
74	Linking the small-scale relativistic winds and the large-scale molecular outflows in the zÂ= 1.51 lensed quasar HSÂ0810+2554. Monthly Notices of the Royal Astronomical Society, 2020, 496, 598-611.	1.6	12
75	X-Ray Redshifts for Obscured AGN: A Case Study in the J1030 Deep Field. Astrophysical Journal, 2021, 906, 90.	1.6	12
76	The XMM deep survey in the CDFS. Astronomy and Astrophysics, 2020, 639, A51.	2.1	11
77	Broad-band X-ray analysis of local mid-infrared-selected Compton-thick AGN candidates. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1662-1674.	1.6	10
78	The deep <i>Chandra</i> survey in the SDSS J1030+0524 field. Astronomy and Astrophysics, 2020, 637, A52.	2.1	10
79	<i>XMM-Newton</i> reveals a Seyfert-like X-ray spectrum in the <i>z</i> = 3.6 QSO B1422+231. Astronomy and Astrophysics, 2016, 592, A104.	2.1	9
80	THE <i>XMM-NEWTON</i> SPECTRUM OF A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE: AN ELUSIVE INVERTED P-CYGNI PROFILE. Astrophysical Journal, 2013, 778, 62.	1.6	8
81	The Composite Nature of Dust-obscured Galaxies (DOGs) at zÂâ^¼Â2–3 in the COSMOS Field. II. The AGN Fraction. Astronomical Journal, 2019, 157, 233.	1.9	8
82	Deep XMM-Newton Observations of an X-ray Weak Broad Absorption Line Quasar at z = 6.5. Astrophysical Journal Letters, 2022, 924, L25.	3.0	8
83	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2015, 574, A144.	2.1	7
84	Compton-Thick AGN in the NuSTAR ERA VII. A joint NuSTAR, Chandra, and XMM-Newton Analysis of Two Nearby, Heavily Obscured Sources. Astrophysical Journal, 2021, 922, 159.	1.6	7
85	The properties of the X-ray corona in the distant (<i>z</i> = 3.91) quasar APM 08279+5255. Astronomy and Astrophysics, 2022, 662, A98.	2.1	6
86	The <i>NuSTAR</i> extragalactic survey of the <i>James Webb Space Telescope</i> North Ecliptic Pole time-domain field. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5176-5195.	1.6	5
87	Inferring Compton-thick AGN candidates at zÂ>Â2 with Chandra using the >8ÂkeV rest-frame spectral curvature. Monthly Notices of the Royal Astronomical Society, 2017, 471, 364-372.	1.6	4
88	The active nucleus of the ULIRG IRAS F00183–7111 viewed by <i>NuSTAR</i> . Astronomy and Astrophysics, 2017, 606, A117.	2.1	4
89	<i>XMM-NEWTON</i> OBSERVATIONS OF THREE INTERACTING LUMINOUS INFRARED GALAXIES. Astrophysical Journal, 2014, 787, 40.	1.6	3
90	Modelling the flaring activity of the high-z, hard X-ray-selected blazar IGR J22517+2217. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	2

#	Article	IF	CITATIONS
91	Xâ€ray selection of Comptonâ€Thick <scp>AGN</scp> at high redshift. Astronomische Nachrichten, 2017, 338, 316-322.	0.6	2
92	The role of SPICA-like missions and the Origins Space Telescope in the quest for heavily obscured AGN and synergies with Athena. Publications of the Astronomical Society of Australia, 2021, 38, .	1.3	2
93	X-raying winds in distant quasars: The first high-redshift wind duty cycle. Astronomy and Astrophysics, 2020, 638, A136.	2.1	2
94	<i>NuSTAR</i> reveals that the heavily obscured nucleus of NGC 2785 was the contaminant of IRAS 09104+4109 in the <i>Beppo</i> SAX/PDS hard X-rays. Astronomy and Astrophysics, 2018, 619, A16.	2.1	1
95	Simbol-X Core Science in a Context. , 2009, , .		0
96	The IR to X-rays SED of the Heavily Obscured Quasar IRAS 09104+4109. , 2009, , .		0
97	X-ray spectral analysis of C-COSMOS sources. , 2010, , .		0
98	Type 2 Quasars at the heart of dust-obscured galaxies (DOGs) at high z. , 2010, , .		0
99	The <scp>XMM</scp> deep survey in the Chandra Deep Field South. Astronomische Nachrichten, 2017, 338, 311-315.	0.6	0