Jun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1961396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionalization of Electrodes with Tunable [EMIM] _{<i>x</i>} (i>x+1 [–] lonic Liquid Clusters for Electrochemical Separations. Chemistry of Materials, 2022, 34, 2612-2623.	6.7	5
2	Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ over Cu/SSZ-13: Elucidating Dynamics of Cu Active Sites with In Situ UV–Vis Spectroscopy and DFT Calculations. Journal of Physical Chemistry C, 2022, 126, 8720-8733.	3.1	20
3	Atom typing using graph representation learning: How do models learn chemistry?. Journal of Chemical Physics, 2022, 156, .	3.0	7
4	Global optimization of chemical cluster structures: Methods, applications, and challenges. International Journal of Quantum Chemistry, 2021, 121, e26553.	2.0	31
5	Graphene Oxide as a Pb(II) Separation Medium: Has Part of the Story Been Overlooked?. Jacs Au, 2021, 1, 766-776.	7.9	9
6	Efficient evaluation of electrostatic potential with computerized optimized code. Physical Chemistry Chemical Physics, 2021, 23, 20323-20328.	2.8	664
7	Ligand control of low-frequency electron paramagnetic resonance linewidth in Cr(iii) complexes. Dalton Transactions, 2021, 50, 5342-5350.	3.3	5
8	Structure and Stability of the Ionic Liquid Clusters [EMIM] _{<i>n</i>} [BF ₄] _{<i>n</i>+1} [–] (<i>n</i> = 1–9): Implications for Electrochemical Separations. Journal of Physical Chemistry Letters, 2020, 11, 6844-6851.	4.6	12
9	NWPEsSe: An Adaptive-Learning Global Optimization Algorithm for Nanosized Cluster Systems. Journal of Chemical Theory and Computation, 2020, 16, 3947-3958.	5.3	47
10	General Protocol for the Accurate Prediction of Molecular ¹³ C/ ¹ H NMR Chemical Shifts via Machine Learning Augmented DFT. Journal of Chemical Information and Modeling, 2020, 60, 3746-3754.	5.4	53
11	Influence of Ag metal dispersion on the thermal conversion of ethanol to butadiene over Ag-ZrO2/SiO2 catalysts. Journal of Catalysis, 2020, 386, 30-38.	6.2	22
12	<scp>libreta</scp> : Computerized Optimization and Code Synthesis for Electron Repulsion Integral Evaluation. Journal of Chemical Theory and Computation, 2018, 14, 572-587.	5.3	89
13	Origins of the enantioselectivity of a palladium catalyst with BINOL–phosphoric acid ligands. Organic and Biomolecular Chemistry, 2018, 16, 8064-8071.	2.8	14
14	Structures and energetics of hydrated deprotonated cis-pinonic acid anion clusters and their atmospheric relevance. Physical Chemistry Chemical Physics, 2017, 19, 10676-10684.	2.8	17
15	A Theoretical Study on Methane C—H Bond Activation by Bare [FeO] ^{+/0/–} . Journal of Physical Chemistry A, 2017, 121, 3501-3514.	2.5	16
16	The first water coordination sphere of lanthanide(iii) motexafins (Ln-Motex2+, Ln = La, Gd, Lu) and its effects on structures, reduction potentials and UV-vis absorption spectra. Theoretical studies. Physical Chemistry Chemical Physics, 2017, 19, 20160-20171.	2.8	9
17	Mechanistic Variants in Gas-Phase Metal-Oxide Mediated Activation of Methane at Ambient Conditions. Journal of the American Chemical Society, 2016, 138, 11368-11377.	13.7	85
18	Electronic Origins of the Variable Efficiency of Room-Temperature Methane Activation by Homo- and Heteronuclear Cluster Oxide Cations [XYO ₂] ⁺ (X, Y = Al, Si, Mg): Competition between Proton-Coupled Electron Transfer and Hydrogen-Atom Transfer. Journal of the American Chemical Society, 2016, 138, 7973-7981.	13.7	90

Jun Zhang

#	Article	IF	CITATIONS
19	Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Physical Chemistry Chemical Physics, 2016, 18, 3003-3010.	2.8	292
20	Third-Order Incremental Dual-Basis Set Zero-Buffer Approach for Large High-Spin Open-Shell Systems. Journal of Chemical Theory and Computation, 2015, 11, 962-968.	5.3	10
21	ABCluster: the artificial bee colony algorithm for cluster global optimization. Physical Chemistry Chemical Physics, 2015, 17, 24173-24181.	2.8	415
22	Approaching the complete basis set limit of CCSD(T) for large systems by the third-order incremental dual-basis set zero-buffer F12 method. Journal of Chemical Physics, 2014, 140, 044114.	3.0	12
23	Actinoid(III) Hydration—First Principle Gibbs Energies of Hydration Using High Level Correlation Methods. Journal of Chemical Theory and Computation, 2014, 10, 5593-5598.	5.3	30
24	Dispersion Interaction Stabilizes Sterically Hindered Double Fullerenes. Chemistry - A European Journal, 2014, 20, 13909-13912.	3.3	21
25	Understanding Lanthanoid(III) Hydration Structure and Kinetics by Insights from Energies and Wave functions. Inorganic Chemistry, 2014, 53, 7700-7708.	4.0	82
26	Third-Order Incremental Dual-Basis Set Zero-Buffer Approach: An Accurate and Efficient Way To Obtain CCSD and CCSD(T) Energies. Journal of Chemical Theory and Computation, 2013, 9, 2992-3003.	5.3	29
27	Tailored Computational Approaches to Interrogate Heavy Element Chemistry and Structure in Condensed Phase. ACS Symposium Series, 0, , 219-245.	0.5	0