Ann E Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/196075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrating tropical research into biology education is urgently needed. PLoS Biology, 2022, 20, e3001674.	2.6	3
2	"Drawing―your Own Conclusions: Sketchnoting as a Pedagogical Tool for Teaching Ecology. Innovative Higher Education, 2021, 46, 303-319.	1.5	6
3	Tree Species of Wet Tropical Forests Differ in Their Tissue Biochemistry and Effects on Soil Carbon Dynamics. Frontiers in Forests and Global Change, 2021, 4, .	1.0	2
4	Modeling the Effects of Global Change on Ecosystem Processes in a Tropical Rainforest. Forests, 2020, 11, 213.	0.9	7
5	Do corn-soybean rotations enhance decomposition of soil organic matter?. Plant and Soil, 2019, 444, 427-442.	1.8	31
6	Modeling Experiments for Evaluating the Effects of Trees, Increasing Temperature, and Soil Texture on Carbon Stocks in Agroforestry Systems in Kerala, India. Forests, 2019, 10, 803.	0.9	6
7	Tropical Tree Species Effects on Soil pH and Biotic Factors and the Consequences for Macroaggregate Dynamics. Forests, 2018, 9, 184.	0.9	13
8	Tropical tree species traits drive soil cation dynamics via effects on pH: a proposed conceptual framework. Ecological Monographs, 2017, 87, 685-701.	2.4	18
9	Native tree species regulate nitrous oxide fluxes in tropical plantations. , 2014, 24, 750-758.		9
10	Sorption of organic carbon compounds to the fine fraction of surface and subsurface soils. Geoderma, 2014, 213, 79-86.	2.3	31
11	Unexpected Effects of Chitin, Cellulose, and Lignin Addition on Soil Dynamics in a Wet Tropical Forest. Ecosystems, 2014, 17, 918-930.	1.6	14
12	Rapidly growing tropical trees mobilize remarkable amounts of nitrogen, in ways that differ surprisingly among species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10398-10402.	3.3	37
13	Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sensing of Environment, 2011, 115, 2836-2849.	4.6	191
14	Impacts of individual tree species on carbon dynamics in a moist tropical forest environment. Ecological Applications, 2010, 20, 1087-1100.	1.8	43
15	Nitrogen fertilizer effects on soil carbon balances in Midwestern U.S. agricultural systems. Ecological Applications, 2009, 19, 1102-1113.	1.8	148
16	Fine root decay rates vary widely among lowland tropical tree species. Oecologia, 2009, 161, 325-330.	0.9	28
17	Tree Species Effects on Soil Properties in Experimental Plantations in Tropical Moist Forest. Soil Science Society of America Journal, 2007, 71, 1389-1397.	1.2	102
18	Lignin and enhanced litter turnover in tree plantations of lowland Costa Rica. Forest Ecology and Management, 2007, 239, 128-135.	1.4	33

ANN E RUSSELL

#	Article	IF	CITATIONS
19	Fine-root mass, growth and nitrogen content for six tropical tree species. Plant and Soil, 2007, 290, 357-370.	1.8	79
20	TEMPERATURE INFLUENCES CARBON ACCUMULATION IN MOIST TROPICAL FORESTS. Ecology, 2006, 87, 76-87.	1.5	258
21	Nitrogen Fertilization and Cropping System Impacts on Soil Quality in Midwestern Mollisols. Soil Science Society of America Journal, 2006, 70, 249-255.	1.2	88
22	Impact of Nitrogen Fertilization and Cropping System on Carbon Sequestration in Midwestern Mollisols. Soil Science Society of America Journal, 2005, 69, 413-422.	1.2	183
23	SPECIES, ROTATION, AND LIFE-FORM DIVERSITY EFFECTS ON SOIL CARBON IN EXPERIMENTAL TROPICAL ECOSYSTEMS. , 2004, 14, 47-60.		92
24	Compost mineralization in soil as a function of composting process conditions. European Journal of Soil Biology, 2003, 39, 117-127.	1.4	88
25	Relationships between crop-species diversity and soil characteristics in southwest Indian agroecosystems. Agriculture, Ecosystems and Environment, 2002, 92, 235-249.	2.5	16
26	Analysis of factors regulating ecosystemdevelopment on Mauna Loa using the Century model. Biogeochemistry, 2000, 51, 161-191.	1.7	19
27	Patterns of Clonal Diversity in Dicranopteris linearis on Mauna Loa, Hawaii1. Biotropica, 1999, 31, 449-459.	0.8	25
28	The ecology of the climbing fern Dicranopteris linearis on windward Mauna Loa, Hawaii. Journal of Ecology, 1998, 86, 765-779.	1.9	135
29	Primary Productivity and Ecosystem Development Along an Elevational Gradient on Mauna Loa, Hawai'i. Ecology, 1997, 78, 707.	1.5	7
30	Decomposition and potential nitrogen fixation in <i>Dicranopteris linearis</i> litter on Mauna Loa, Hawai'i. Journal of Tropical Ecology, 1997, 13, 579-594.	0.5	74
31	PRIMARY PRODUCTIVITY AND ECOSYSTEM DEVELOPMENT ALONG AN ELEVATIONAL GRADIENT ON MAUNA LOA, HAWAIâ€ĩ. Ecology, 1997, 78, 707-721.	1.5	226
32	Both nitrogen and phosphorus limit plant production on young Hawaiian lava flows. Biogeochemistry, 1996, 32, 1.	1.7	115