
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1960712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myofibril orientation as a metric for characterizing heart disease. Biophysical Journal, 2022, 121, 565-574.	0.2	17
2	Post-translational modification patterns on \hat{I}^2 -myosin heavy chain are altered in ischemic and nonischemic human hearts. ELife, 2022, 11, .	2.8	10
3	Low expression of the K280N TNNT2 mutation is sufficient to increase basal myofilament activation in human hypertrophy cardiomyopathy. , 2022, 1, 100007.		2
4	Mutation location of HCM-causing troponin T mutations defines the degree of myofilament dysfunction in human cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 150, 77-90.	0.9	10
5	Anomalous structural dynamics of minimally frustrated residues in cardiac troponin C triggers hypertrophic cardiomyopathy. Chemical Science, 2021, 12, 7308-7323.	3.7	7
6	The structure of the native cardiac thin filament at systolic Ca ²⁺ levels. Proceedings of the United States of America, 2021, 118, .	3.3	52
7	Fast skeletal myosin-binding protein-C regulates fast skeletal muscle contraction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
8	Pathogenic variants in TNNC2 cause congenital myopathy due to an impaired force response to calcium. Journal of Clinical Investigation, 2021, 131, .	3.9	11
9	Mandibular muscle troponin of the Florida carpenter ant Camponotus floridanus: extending our insights into invertebrate Ca2+ regulation. Journal of Muscle Research and Cell Motility, 2021, 42, 399-417.	0.9	3
10	Aerobic exercise training reduces cardiac function and coronary flow-induced vasodilation in mice lacking adiponectin. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1-H14.	1.5	7
11	Abstract P350: Myofibril Orientation In Cardiac Muscle And Its Implication For Heart Disease. Circulation Research, 2021, 129, .	2.0	0
12	Abstract P432: Alpha-actinin 2 Missense Variant And Its Role In Cardiac Muscle Force Production And Diastolic Dysfunction. Circulation Research, 2021, 129, .	2.0	0
13	Cardiomyocyte nuclearity and ploidy: when is double trouble?. Journal of Muscle Research and Cell Motility, 2020, 41, 329-340.	0.9	9
14	Mechanical contribution to muscle thin filament activation. Journal of Biological Chemistry, 2020, 295, 15913-15922.	1.6	0
15	A comprehensive guide to genetic variants and post-translational modifications of cardiac troponin C. Journal of Muscle Research and Cell Motility, 2020, 42, 323-342.	0.9	12
16	Eliminating the First Inactive State and Stabilizing the Active State of the Cardiac Regulatory System Alters Behavior in Solution and in Ordered Systems. Biochemistry, 2020, 59, 3487-3497.	1.2	5
17	Sexual dimorphism in cardiac transcriptome associated with a troponin C murine model of hypertrophic cardiomyopathy. Physiological Reports, 2020, 8, e14396.	0.7	7
18	Oxidative Stress in Muscle Diseases: Current and Future Therapy 2019. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-4.	1.9	12

#	Article	IF	CITATIONS
19	Meta-analysis of cardiomyopathy-associated variants in troponin genes identifies loci and intragenic hot spots that are associated with worse clinical outcomes. Journal of Molecular and Cellular Cardiology, 2020, 142, 118-125.	0.9	30
20	Basic residues within the cardiac troponin T C terminus are required for full inhibition of muscle contraction and limit activation by calcium. Journal of Biological Chemistry, 2019, 294, 19535-19545.	1.6	12
21	Dynamic and Structural Allosteric Events between the D/E Linker and N-Domain of Cardiac Troponin C Reveal a Novel Mechanism for Cardiac Muscle Regulation. Biophysical Journal, 2019, 116, 488a.	0.2	0
22	The intrinsically disordered C terminus of troponin T binds to troponin C to modulate myocardial force generation. Journal of Biological Chemistry, 2019, 294, 20054-20069.	1.6	23
23	The missing links within troponin. Archives of Biochemistry and Biophysics, 2019, 663, 95-100.	1.4	6
24	Pathogenic troponin T mutants with opposing effects on myofilament Ca2+ sensitivity attenuate cardiomyopathy phenotypes in mice. Archives of Biochemistry and Biophysics, 2019, 661, 125-131.	1.4	8
25	Familial Dilated Cardiomyopathy Associated With a Novel Combination of Compound Heterozygous TNNC1 Variants. Frontiers in Physiology, 2019, 10, 1612.	1.3	15
26	Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy. JCI Insight, 2019, 4, .	2.3	18
27	Clinical and Biophysical Characterization of a Mutation in the N-Helix Region of Cardiac Troponin C: Evidence for an Allosteric Mechanism of Contractile Dysfunction. Biophysical Journal, 2018, 114, 568a.	0.2	Ο
28	Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2018, 114, 320-327.	0.9	63
29	Aberrant Cardiac Muscle Mechanics in a Hypertrophic Cardiomyopathy Troponin T ILE79ASN Transgenic Mouse. Biophysical Journal, 2018, 114, 502a.	0.2	0
30	Cardiac Thin Filament-Mediated Calcium Sensitization Modulates Cross-Bridge Kinetics. Biophysical Journal, 2018, 114, 315a-316a.	0.2	0
31	Is Thin Filament Movement Switched On and Off by a Thermodynamic Process Alone. Biophysical Journal, 2018, 114, 136a.	0.2	Ο
32	Location of Hypertrophic Cardiomyopathy-Causing Troponin T Mutations Determines Degree of Myofilament Dysfunction. Biophysical Journal, 2018, 114, 313a.	0.2	0
33	Weak Domain Stability and Higher Ca2+ Binding Affinity Contribute to Allostery between the D/E Linker and N-Helix of Cardiac Troponin C. Biophysical Journal, 2018, 114, 421a-422a.	0.2	Ο
34	Oxidative Stress in Muscle Diseases: Current and Future Therapy. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-4.	1.9	24
35	Structural and functional impact of troponin C-mediated Ca2+ sensitization on myofilament lattice spacing and cross-bridge mechanics in mouse cardiac muscle. Journal of Molecular and Cellular Cardiology, 2018, 123, 26-37.	0.9	27
36	Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Oncotarget, 2018, 9, 1461-1482.	0.8	58

#	Article	IF	CITATIONS
37	Allosteric Transmission along a Loosely Structured Backbone Allows a Cardiac Troponin C Mutant to Function with Only One Ca2+ Ion. Journal of Biological Chemistry, 2017, 292, 2379-2394.	1.6	15
38	Will you still need me (Ca ²⁺ , TnT, and DHPR), will you still cleave me (calpain), when I'm 64?. Aging Cell, 2017, 16, 202-204.	3.0	13
39	Pathogenesis of depression―and anxietyâ€like behavior in an animal model of hypertrophic cardiomyopathy. FASEB Journal, 2017, 31, 2492-2506.	0.2	7
40	Thin Filament-Mediated Modulation of Mouse Cardiac Cross-Bridge Kinetics by Ca 2+ -Sensitizing Mutation CTNC-A8V or Bepridil. Biophysical Journal, 2017, 112, 559a.	0.2	0
41	Myosin Rod Hypophosphorylation and CB Kinetics in Papillary Muscles from a TnC-A8V KI Mouse Model. Biophysical Journal, 2017, 112, 1726-1736.	0.2	10
42	Genotypeâ€specific pathogenic effects in human dilated cardiomyopathy. Journal of Physiology, 2017, 595, 4677-4693.	1.3	42
43	Troponin C Mutations Partially Stabilize the Active State of Regulated Actin and Fully Stabilize the Active State When Paired with Δ14 TnT. Biochemistry, 2017, 56, 2928-2937.	1.2	14
44	Abnormal Cardiac Cross-Bridge Kinetics in a Troponin T ILE79ASN Transgenic Mouse Model. Biophysical Journal, 2017, 112, 558a-559a.	0.2	0
45	A Novel DCM-Associated Mutation in the N-Helix of Cardiac Troponin C Exhibits Impaired Contractile Kinetics and Reduced Ca 2+ -Sensitivity InÂVitro. Biophysical Journal, 2017, 112, 559a.	0.2	0
46	Generation and Characterization of a Human iPSC Cardiomyocyte Model of Troponin T I79N Linked Hypertrophic Cardiomyopathy. Biophysical Journal, 2017, 112, 100a.	0.2	0
47	Amide hydrogens reveal a temperature-dependent structural transition that enhances site-II Ca2+-binding affinity in a C-domain mutant of cardiac troponin C. Scientific Reports, 2017, 7, 691.	1.6	21
48	Myofilament Calcium-Buffering Dependent Action Potential Triangulation inÂHuman-Induced Pluripotent Stem Cell Model of Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2017, 70, 2600-2602.	1.2	17
49	Hypertrophic Cardiomyopathy Cardiac Troponin C Mutations Differentially Affect Slow Skeletal and Cardiac Muscle Regulation. Frontiers in Physiology, 2017, 8, 221.	1.3	16
50	Ca2+-Sensitivity and Elementary Steps of the Cross-Bridge Cycle in Papillary Muscle Fibers from the Troponin C (TnC)-A8V Knock-In Mouse, which Exhibits Hypertrophic Cardiomyopathy (HCM). Biophysical Journal, 2016, 110, 464a-465a.	0.2	0
51	Troponins, intrinsic disorder, and cardiomyopathy. Biological Chemistry, 2016, 397, 731-751.	1.2	18
52	A8V Mutation of Cardiac Troponin C Enhances Troponin I Binding. Biophysical Journal, 2016, 110, 124a.	0.2	0
53	Simultaneous Measurement of Force and Lattice Spacing in Skinned Cardiac Fibers. Biophysical Journal, 2016, 110, 120a.	0.2	0
54	Enhanced troponin I binding explains the functional changes produced by the hypertrophic cardiomyopathy mutation A8V of cardiac troponin C. Archives of Biochemistry and Biophysics, 2016, 601, 97-104.	1.4	16

#	Article	IF	CITATIONS
55	Increases of desmin and α-actinin in mouse cardiac myofibrils as a response to diastolic dysfunction. Journal of Molecular and Cellular Cardiology, 2016, 99, 218-229.	0.9	28
56	Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C. PLoS ONE, 2016, 11, e0164222.	1.1	13
57	Structural and Functional Changes in Skeletal Muscles in an A8V-Troponin C Hypertrophic Cardiomyopathy Knock-In Mouse Model. Biophysical Journal, 2015, 108, 594a.	0.2	0
58	The Functional Consequences of Hypertrophic Cardiomyopathy Troponin C Mutations in the Regulation of Slow Skeletal Muscle Contraction: The Protective Role of Slow Skeletal Troponin I. Biophysical Journal, 2015, 108, 593a-594a.	0.2	0
59	In Vivo Analysis of Troponin C Knock-In (A8V) Mice. Circulation: Cardiovascular Genetics, 2015, 8, 653-664.	5.1	32
60	Constitutive Phosphorylation of Cardiac Myosin Regulatory Light Chain in Vivo. Journal of Biological Chemistry, 2015, 290, 10703-10716.	1.6	52
61	<i>S</i> -Nitrosylation of Sarcomeric Proteins Depresses Myofilament Ca ²⁺ Sensitivity in Intact Cardiomyocytes. Antioxidants and Redox Signaling, 2015, 23, 1017-1034.	2.5	47
62	Pathogenesis associated with a restrictive cardiomyopathy mutant in cardiac troponin T is due to reduced protein stability and greatly increased myofilament Ca2+ sensitivity. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 365-372.	1.1	6
63	Structural and protein interaction effects of hypertrophic and dilated cardiomyopathic mutations in alpha-tropomyosin. Frontiers in Physiology, 2014, 5, 460.	1.3	11
64	Long Term Ablation of Protein Kinase A (PKA)-mediated Cardiac Troponin I Phosphorylation Leads to Excitation-Contraction Uncoupling and Diastolic Dysfunction in a Knock-in Mouse Model of Hypertrophic Cardiomyopathy. Journal of Biological Chemistry, 2014, 289, 23097-23111.	1.6	29
65	Disease Causing Troponin C Mutations Have Varied Effects on Actin Regulatory States. Biophysical Journal, 2014, 106, 722a.	0.2	Ο
66	Myosin Heavy Chain Isoform Switching in Skeletal Muscles in an A8V-Troponin C Hypertrophic Cardiomyopathy Knock-In Mouse Model. Biophysical Journal, 2014, 106, 775a.	0.2	0
67	Crossing Mice Carrying TnT Disease Mutations with Opposite Effects on the Myofilament Calcium Sensitivity Partially Normalizes Myofilament Function and Ameliorates Cardiomyopathy Phenotypes. Biophysical Journal, 2014, 106, 345a.	0.2	Ο
68	In Vivo Analysis of Troponin C Knock-In (A8V) Mice: Evidence that TNNC1 is a Hypertrophic Cardiomyopathy Susceptibility Gene. Biophysical Journal, 2014, 106, 723a.	0.2	0
69	Exon 12 of slow skeletal troponin t affects calcium sensitivity of force development and interactions with other thin filament components (1102.30). FASEB Journal, 2014, 28, 1102.30.	0.2	Ο
70	S-Nitrosylation Decreases Ca2+ Sensitivity and Actomyosin ATPase Activity of Contractile Proteins in Cardiac Myofibrils. Biophysical Journal, 2013, 104, 451a.	0.2	0
71	Analysis of the Molecular Pathogenesis of Cardiomyopathy-Causing cTnTÂMutants I79N, ΔE96, and ΔK210. Biophysical Journal, 2013, 104, 1979-1988.	0.2	9
72	Myofilament calcium de-sensitization and contractile uncoupling prevent pause-triggered ventricular tachycardia in mouse hearts with chronic myocardial infarction. Journal of Molecular and Cellular Cardiology, 2013, 60, 8-15.	0.9	14

#	Article	IF	CITATIONS
73	Instability of D145E, a Cardiac Troponin C Mutant Linked to Cardiomyopathy, Dictates Profound Changes in Ca2+ Regulation of Myofibrils at Increased Temperature. Biophysical Journal, 2013, 104, 449a-450a.	0.2	0
74	A Mutation in TNNC1-encoded Cardiac Troponin C, TNNC1-A31S, Predisposes to Hypertrophic Cardiomyopathy and Ventricular Fibrillation. Journal of Biological Chemistry, 2012, 287, 31845-31855.	1.6	50
75	Generation and Functional Characterization of Knock-in Mice Harboring the Cardiac Troponin I-R21C Mutation Associated with Hypertrophic Cardiomyopathy. Journal of Biological Chemistry, 2012, 287, 2156-2167.	1.6	38
76	The Functional Properties of Human Slow Skeletal Troponin T Isoforms in Cardiac Muscle Regulation. Journal of Biological Chemistry, 2012, 287, 37362-37370.	1.6	21
77	Absence of Myocardial Thyroid Hormone Inactivating Deiodinase Results in Restrictive Cardiomyopathy in Mice. Molecular Endocrinology, 2012, 26, 809-818.	3.7	29
78	Collagen XIV is important for growth and structural integrity of the myocardium. Journal of Molecular and Cellular Cardiology, 2012, 53, 626-638.	0.9	60
79	The Functional Consequences of HCM Troponin C Mutations in the Regulation of Slow Skeletal Muscle Contraction. Biophysical Journal, 2012, 102, 155a.	0.2	0
80	The Effect of HCM and RCM Causing Mutations of Troponin T on Force Generation and Cross-Bridge Kinetics in Thin-Filament Reconstituted Bovine Cardiac Muscle Fibers. Biophysical Journal, 2012, 102, 156a.	0.2	0
81	Pseudo-Phosphorylation of Cardiac Troponin I Containing the RCM Troponin T Deletion Clutamic Acid 96 is not an Accurate Indicator of the Phosphorylation Effects by PKA in Skinned Fibers. Biophysical Journal, 2012, 102, 157a.	0.2	0
82	The Hypertrophic Cardiomyopathy Mutation R21C in Cardiac Troponin I Affects Ca2+ Homeostasis and Contractility in Transgenic Cardiomyocytes. Biophysical Journal, 2012, 102, 157a.	0.2	0
83	A Novel Mutation in TNNC1-ENCODED Cardiac Troponin C Predisposes to Hypertrophic Cardiomyopathy and Recurrent Episodes of Aborted Sudden Cardiac Death. Biophysical Journal, 2011, 100, 114a.	0.2	0
84	Fetal Cardiac Troponin Isoforms Rescue the Increased Ca2+ Sensitivity Produced by a Novel Double Deletion in Cardiac Troponin T Linked to Restrictive Cardiomyopathy. Biophysical Journal, 2011, 100, 114a-115a.	0.2	0
85	Myosin cross-bridges do not form precise rigor bonds in hypertrophic heart muscle carrying troponin t mutations. Journal of Molecular and Cellular Cardiology, 2011, 51, 409-418.	0.9	6
86	Redox state of Troponin C Cysteine in the D/E helix alters the C-domain affinity for the thin filament of vertebrate striated muscle. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 391-397.	1.1	12
87	Functional Characterization of TNNC1 Rare Variants Identified in Dilated Cardiomyopathy. Journal of Biological Chemistry, 2011, 286, 34404-34412.	1.6	43
88	Strong Cross-bridges Potentiate the Ca2+ Affinity Changes Produced by Hypertrophic Cardiomyopathy Cardiac Troponin C Mutants in Myofilaments. Journal of Biological Chemistry, 2011, 286, 1005-1013.	1.6	28
89	Fetal Cardiac Troponin Isoforms Rescue the Increased Ca2+ Sensitivity Produced by a Novel Double Deletion in Cardiac Troponin T Linked to Restrictive Cardiomyopathy. Journal of Biological Chemistry, 2011, 286, 20901-20912.	1.6	19
90	Late Onset Sporadic Dilated Cardiomyopathy Caused by a Cardiac Troponin T Mutation. Clinical and Translational Science, 2010, 3, 219-226.	1.5	9

#	Article	IF	CITATIONS
91	Predicting Cardiomyopathic Phenotypes by Altering Ca2+ Affinity of Cardiac Troponin C. Journal of Biological Chemistry, 2010, 285, 27785-27797.	1.6	26
92	A Dilated Cardiomyopathy Troponin C Mutation Lowers Contractile Force by Reducing Strong Myosin-Actin Binding. Journal of Biological Chemistry, 2010, 285, 17371-17379.	1.6	25
93	Cardiac Troponin Mutations and Restrictive Cardiomyopathy. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-9.	3.0	54
94	Mutations in Troponin that cause HCM, DCM AND RCM: What can we learn about thin filament function?. Journal of Molecular and Cellular Cardiology, 2010, 48, 882-892.	0.9	176
95	Correcting diastolic dysfunction by Ca2+ desensitizing troponin in a transgenic mouse model of restrictive cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2010, 49, 402-411.	0.9	65
96	Clinical and Functional Characterization of <i>TNNT2</i> Mutations Identified in Patients With Dilated Cardiomyopathy. Circulation: Cardiovascular Genetics, 2009, 2, 306-313.	5.1	95
97	A Functional and Structural Study of Troponin C Mutations Related to Hypertrophic Cardiomyopathy. Journal of Biological Chemistry, 2009, 284, 19090-19100.	1.6	83
98	Functional Effects of a Restrictive-Cardiomyopathy-Linked Cardiac Troponin I Mutation (R145W) in Transgenic Mice. Journal of Molecular Biology, 2009, 392, 1158-1167.	2.0	41
99	Modulation of troponin C affinity for the thin filament by different cross-bridge states in skinned skeletal muscle fibers. Pflugers Archiv European Journal of Physiology, 2008, 456, 1177-1187.	1.3	10
100	Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. Journal of Molecular and Cellular Cardiology, 2008, 45, 281-288.	0.9	111
101	Functional Consequences of the Human Cardiac Troponin I Hypertrophic Cardiomyopathy Mutation R145G in Transgenic Mice. Journal of Biological Chemistry, 2008, 283, 20484-20494.	1.6	54
102	A Troponin T Mutation That Causes Infantile Restrictive Cardiomyopathy Increases Ca2+ Sensitivity of Force Development and Impairs the Inhibitory Properties of Troponin. Journal of Biological Chemistry, 2008, 283, 2156-2166.	1.6	52
103	Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. Journal of Clinical Investigation, 2008, 118, 3893-903.	3.9	201
104	lonic interventions that alter the association of troponin C C-domain with the thin filaments of vertebrate striated muscle. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 272-282.	1.1	9
105	Ca2+ and Mg2+ binding to weak sites of TnC C-domain induces exposure of a large hydrophobic surface that leads to loss of TnC from the thin filament. International Journal of Biochemistry and Cell Biology, 2006, 38, 110-122.	1.2	8
106	Chemical treatment of mica for atomic force microscopy can affect biological sample conformation. Biophysical Chemistry, 2004, 109, 63-71.	1.5	10