
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1960633/publications.pdf Version: 2024-02-01

BO WANC

#	Article	IF	CITATIONS
1	High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO ₂ Capture. Science, 2008, 319, 939-943.	12.6	3,592
2	Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science, 2010, 327, 846-850.	12.6	1,607
3	Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008, 453, 207-211.	27.8	1,452
4	Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews, 2016, 307, 361-381.	18.8	1,098
5	Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20637-20640.	7.1	1,042
6	Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by Electrochemically-Deposited PANI. Journal of the American Chemical Society, 2015, 137, 4920-4923.	13.7	832
7	Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. Journal of the American Chemical Society, 2017, 139, 4258-4261.	13.7	775
8	Hybridization of MOFs and polymers. Chemical Society Reviews, 2017, 46, 3108-3133.	38.1	708
9	Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nature Catalysis, 2019, 2, 448-456.	34.4	642
10	Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews, 2020, 49, 3565-3604.	38.1	617
11	Preparation of Nanofibrous Metal–Organic Framework Filters for Efficient Air Pollution Control. Journal of the American Chemical Society, 2016, 138, 5785-5788.	13.7	574
12	Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nature Communications, 2019, 10, 2177.	12.8	476
13	Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy and Environmental Science, 2014, 7, 2715.	30.8	434
14	Tuning the Luminescence of Metal–Organic Frameworks for Detection of Energetic Heterocyclic Compounds. Journal of the American Chemical Society, 2014, 136, 15485-15488.	13.7	390
15	Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews, 2017, 46, 6927-6945.	38.1	347
16	Metal–Organic Framework Films and Their Potential Applications in Environmental Pollution Control. Accounts of Chemical Research, 2019, 52, 1461-1470.	15.6	319
17	Threeâ€Dimensional Anionic Cyclodextrinâ€Based Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 16313-16317.	13.8	290
18	Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorganic Chemistry Frontiers, 2016, 3, 896-909.	6.0	278

#	Article	IF	CITATIONS
19	Rollâ€ŧoâ€Roll Production of Metalâ€Organic Framework Coatings for Particulate Matter Removal. Advanced Materials, 2017, 29, 1606221.	21.0	252
20	Pillar[5]areneâ€Based Supramolecular Organic Frameworks for Highly Selective CO ₂ apture at Ambient Conditions. Advanced Materials, 2014, 26, 7027-7031.	21.0	251
21	Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nature Communications, 2019, 10, 767.	12.8	247
22	Photoinduced Postsynthetic Polymerization of a Metal–Organic Framework toward a Flexible Standâ€Alone Membrane. Angewandte Chemie - International Edition, 2015, 54, 4259-4263.	13.8	235
23	Stimuli-responsive metal–organic frameworks gated by pillar[5]arene supramolecular switches. Chemical Science, 2015, 6, 1640-1644.	7.4	228
24	Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 1923-1927.	13.7	217
25	Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions. Journal of the American Chemical Society, 2016, 138, 10100-10103.	13.7	214
26	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021, 60, 23946-23974.	13.8	204
27	A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte Chemie - International Edition, 2016, 55, 3419-3423.	13.8	201
28	Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catalysis, 2020, 10, 8717-8726.	11.2	200
29	Fe/Ni Metal–Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential. ACS Applied Materials & Interfaces, 2016, 8, 16736-16743.	8.0	198
30	Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nature Materials, 2021, 20, 1551-1558.	27.5	195
31	Cancer-Cell-Activated Photodynamic Therapy Assisted by Cu(II)-Based Metal–Organic Framework. ACS Nano, 2019, 13, 6879-6890.	14.6	179
32	Zn ²⁺ â€Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates. Small, 2015, 11, 3807-3813.	10.0	178
33	Shaping of Metal–Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. Journal of the American Chemical Society, 2016, 138, 10810-10813.	13.7	178
34	Carbon dioxide in the cage: manganese metal–organic frameworks for high performance CO ₂ electrodes in Li–CO ₂ batteries. Energy and Environmental Science, 2018, 11, 1318-1325.	30.8	172
35	Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environmental Research, 2019, 176, 108488.	7.5	167
36	Water Contaminant Elimination Based on Metal–Organic Frameworks and Perspective on Their Industrial Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 4548-4563.	6.7	165

BO WANG

#	Article	IF	CITATIONS
37	A Flexible Metal–Organic Framework with 4-Connected Zr ₆ Nodes. Journal of the American Chemical Society, 2018, 140, 11179-11183.	13.7	158
38	Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nature Communications, 2019, 10, 4204.	12.8	157
39	Metal–Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation. Journal of the American Chemical Society, 2021, 143, 5727-5736.	13.7	157
40	Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nature Communications, 2021, 12, 2682.	12.8	154
41	A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chemical Communications, 2014, 50, 8057-8060.	4.1	151
42	Synthesis and Structure of Chemically Stable Metalâ^'Organic Polyhedra. Journal of the American Chemical Society, 2009, 131, 12532-12533.	13.7	150
43	Metalâ€Triazolateâ€Frameworkâ€Derived FeN ₄ Cl ₁ Singleâ€Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 27324-27329.	13.8	142
44	Ca ²⁺ , pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. Journal of Materials Chemistry B, 2016, 4, 135-140.	5.8	136
45	Recent advances in AlEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Materials Chemistry Frontiers, 2017, 1, 2474-2486.	5.9	136
46	The impact of the particle size of a metal–organic framework for sulfur storage in Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 8272-8275.	10.3	129
47	Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. Angewandte Chemie - International Edition, 2018, 57, 16501-16505.	13.8	128
48	Explosives in the Cage: Metal–Organic Frameworks for Highâ€Energy Materials Sensing and Desensitization. Advanced Materials, 2017, 29, 1701898.	21.0	127
49	In Situ Growth of MOFs on the Surface of Si Nanoparticles for Highly Efficient Lithium Storage: Si@MOF Nanocomposites as Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 2178-2182.	8.0	124
50	Multivariate MOF-Templated Pomegranate-Like Ni/C as Efficient Bifunctional Electrocatalyst for Hydrogen Evolution and Urea Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 4750-4756.	8.0	123
51	Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie - International Edition, 2019, 58, 15742-15746.	13.8	121
52	Macrocyclic Arenesâ€Based Conjugated Macrocycle Polymers for Highly Selective CO ₂ Capture and Iodine Adsorption. Angewandte Chemie - International Edition, 2021, 60, 8967-8975.	13.8	119
53	Zn-BTC MOFs with active metal sites synthesized via a structure-directing approach for highly efficient carbon conversion. Chemical Communications, 2014, 50, 2624-2627.	4.1	118
54	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117

#	Article	IF	CITATIONS
55	Water Purification: Adsorption over Metalâ€Organic Frameworks. Chinese Journal of Chemistry, 2016, 34, 175-185.	4.9	116
56	Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li–CO ₂ batteries. Energy and Environmental Science, 2019, 12, 1046-1054.	30.8	115
57	Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm, 2016, 18, 4236-4258.	2.6	110
58	Ferroceneâ€Linkageâ€Facilitated Charge Separation in Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2019, 58, 4221-4226.	13.8	109
59	Metalâ€Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability. Advanced Materials, 2016, 28, 5837-5843.	21.0	108
60	Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. Journal of Materials Chemistry A, 2014, 2, 2168-2173.	10.3	102
61	A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation. Chemical Communications, 2014, 50, 6894.	4.1	101
62	Highly Porous ZIF-8 Nanocrystals Prepared by a Surfactant Mediated Method in Aqueous Solution with Enhanced Adsorption Kinetics. ACS Applied Materials & Interfaces, 2014, 6, 14994-14999.	8.0	101
63	A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition. Scientific Reports, 2014, 4, 4366.	3.3	100
64	Nickel-substituted zeolitic imidazolate frameworks for time-resolved alcohol sensing and photocatalysis under visible light. Journal of Materials Chemistry A, 2014, 2, 5724-5729.	10.3	98
65	MOFs and COFs for Batteries and Supercapacitors. Electrochemical Energy Reviews, 2020, 3, 81-126.	25.5	98
66	An Ironâ€Containing Metal–Organic Framework as a Highly Efficient Catalyst for Ozone Decomposition. Angewandte Chemie - International Edition, 2018, 57, 16416-16420.	13.8	97
67	Facile Fabrication of Multifunctional Metal–Organic Framework Hollow Tubes To Trap Pollutants. Journal of the American Chemical Society, 2017, 139, 16482-16485.	13.7	96
68	Decarboxylationâ€Induced Defects in MOFâ€Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 21685-21690.	13.8	94
69	Wearable Thermoelectric Power Generators Combined With Flexible Supercapacitor for Low-Power Human Diagnosis Devices. IEEE Transactions on Industrial Electronics, 2017, 64, 1477-1485.	7.9	90
70	The Synthesis of Hexaazatrinaphthyleneâ€Based 2D Conjugated Copper Metalâ€Organic Framework for Highly Selective and Stable Electroreduction of CO ₂ to Methane. Angewandte Chemie - International Edition, 2021, 60, 16409-16415.	13.8	87
71	Sophisticated Design of Covalent Organic Frameworks with Controllable Bimetallic Docking for a Cascade Reaction. Chemistry - A European Journal, 2016, 22, 9087-9091.	3.3	86
72	Covalent Organic Frameworks with Record Pore Apertures. Journal of the American Chemical Society, 2022, 144, 5145-5154.	13.7	85

#	Article	IF	CITATIONS
73	An effective approach to improve the electrochemical performance of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ cathode by an MOF-derived coating. Journal of Materials Chemistry A, 2016, 4, 5823-5827.	10.3	84
74	Recent advances of covalent organic frameworks in electronic and optical applications. Chinese Chemical Letters, 2016, 27, 1383-1394.	9.0	76
75	Metal–Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26608-26613.	8.0	75
76	Three New Imidazoleâ€Functionalized Hexanuclear Oxidovanadium Clusters with Exceptional Catalytic Oxidation Properties for Alcohols. Chemistry - A European Journal, 2013, 19, 4408-4413.	3.3	73
77	Chirality from substitution: enantiomer separation via a modified metal–organic framework. Journal of Materials Chemistry A, 2015, 3, 12145-12148.	10.3	73
78	An Iron ontaining Metal–Organic Framework as a Highly Efficient Catalyst for Ozone Decomposition. Angewandte Chemie, 2018, 130, 16654-16658.	2.0	73
79	Large π-Conjugated Porous Frameworks as Cathodes for Sodium-Ion Batteries. Journal of Physical Chemistry Letters, 2018, 9, 3205-3211.	4.6	69
80	Metal–Organic Framework Assisted and Tumor Microenvironment Modulated Synergistic Imageâ€Guided Photoâ€Chemo Therapy. Advanced Functional Materials, 2020, 30, 2002431.	14.9	67
81	A copper(<scp>ii</scp>)-based MOF film for highly efficient visible-light-driven hydrogen production. Journal of Materials Chemistry A, 2016, 4, 7174-7177.	10.3	65
82	A Hydrolytically Stable Vanadium(IV) Metal–Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. Angewandte Chemie - International Edition, 2020, 59, 3905-3909.	13.8	63
83	Tuning the Spin State of the Iron Center by Bridgeâ€Bonded Feâ€Oâ€Ti Ligands for Enhanced Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
84	Enhanced Proton Conductivity of Imidazole-Doped Thiophene-Based Covalent Organic Frameworks via Subtle Hydrogen Bonding Modulation. ACS Applied Materials & Interfaces, 2020, 12, 22910-22916.	8.0	62
85	Facile fabrication of magnetically recyclable metal–organic framework nanocomposites for highly efficient and selective catalytic oxidation of benzylic C–H bonds. Chemical Communications, 2014, 50, 8374-8377.	4.1	58
86	Construction of Interlayer Conjugated Links in 2D Covalent Organic Frameworks via Topological Polymerization. Journal of the American Chemical Society, 2021, 143, 7897-7902.	13.7	58
87	Mechanism of the Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by Cobaltâ€Substituted 12â€Tungstenphosphate. Chemistry - A European Journal, 2012, 18, 9870-9876.	3.3	56
88	A Heat-Resistant and Energetic Metal–Organic Framework Assembled by Chelating Ligand. ACS Applied Materials & Interfaces, 2017, 9, 37542-37547.	8.0	55
89	Threeâ€Dimensional Anionic Cyclodextrinâ€Based Covalent Organic Frameworks. Angewandte Chemie, 2017, 129, 16531-16535.	2.0	54
90	Fabrication of Copper Azide Film through Metal–Organic Framework for Micro-Initiator Applications. ACS Applied Materials & Interfaces, 2019, 11, 8081-8088.	8.0	53

#	Article	IF	CITATIONS
91	Stable Aluminum Metal–Organic Frameworks (Al-MOFs) for Balanced CO ₂ and Water Selectivity. ACS Applied Materials & Interfaces, 2018, 10, 3160-3163.	8.0	52
92	Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem, 2021, 3, 100056.	19.1	51
93	Recent Development and Application of Conductive MOFs. Israel Journal of Chemistry, 2018, 58, 1010-1018.	2.3	50
94	Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
95	Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. Journal of Materials Chemistry C, 2018, 6, 5369-5374.	5.5	43
96	Aluminum Metal–Organic Frameworks with Photocatalytic Antibacterial Activity for Autonomous Indoor Humidity Control. ACS Applied Materials & Interfaces, 2020, 12, 46057-46064.	8.0	43
97	Metalâ€Organic Frameworks Derived Porous Carbons: Syntheses, Porosity and Gas Sorption Properties. Chinese Journal of Chemistry, 2016, 34, 157-174.	4.9	42
98	A stable covalent organic framework cathode enables ultra-long cycle life for alkali and multivalent metal rechargeable batteries. Energy Storage Materials, 2022, 48, 439-446.	18.0	42
99	Cation-Induced Synthesis of New Polyoxopalladates. Inorganic Chemistry, 2012, 51, 4435-4437.	4.0	41
100	Zinc/Nickelâ€Doped Hollow Core–Shell Co ₃ O ₄ Derived from a Metal–Organic Framework with High Capacity, Stability, and Rate Performance in Lithium/Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1651-1656.	3.3	40
101	Recent advances in metal-organic frameworks for lithium metal anode protection. Chinese Chemical Letters, 2020, 31, 609-616.	9.0	40
102	Binary Pd–Polyoxometalates and Isolation of a Ternary Pd–V–Polyoxomolybdate Active Species for Selective Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 2014, 20, 2557-2564.	3.3	39
103	Defect engineering of highly stable lanthanide metal–organic frameworks by particle modulation for coating catalysis. Journal of Materials Chemistry A, 2018, 6, 342-348.	10.3	39
104	Electropolymerization of Molecularâ€ s ieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie - International Edition, 2019, 58, 8768-8772.	13.8	39
105	Tumor-Activated and Metal–Organic Framework Assisted Self-Assembly of Organic Photosensitizers. ACS Nano, 2020, 14, 13056-13068.	14.6	38
106	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	6.8	36
107	Molecular‣ieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by Inâ€Situ Polymerization. Angewandte Chemie - International Edition, 2020, 59, 4401-4405.	13.8	35
108	Shaping of metal-organic frameworks, a critical step toward industrial applications. Matter, 2022, 5, 1070-1091.	10.0	35

BO WANG

#	Article	IF	CITATIONS
109	Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving. Angewandte Chemie - International Edition, 2021, 60, 21304-21309.	13.8	33
110	Plasma modification of a Ni based metal–organic framework for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 8129-8135.	10.3	32
111	Metal-organic frameworks and their derivatives for Li–air batteries. Chinese Chemical Letters, 2020, 31, 635-642.	9.0	32
112	Acid Catalysis in Confined Channels of Metal–Organic Frameworks: Boosting Orthoformate Hydrolysis in Basic Solutions. Journal of the American Chemical Society, 2020, 142, 14848-14853.	13.7	31
113	Dualâ€Redox Sites Guarantee High apacity Sodium Storage in Twoâ€Dimension Conjugated Metal–Organic Frameworks. Advanced Functional Materials, 2022, 32, .	14.9	31
114	Improving areal capacity of flexible Li–CO ₂ batteries by constructing a freestanding cathode with monodispersed MnO nanoparticles in N-doped mesoporous carbon nanofibers. Journal of Materials Chemistry A, 2020, 8, 10354-10362.	10.3	30
115	Crystalline Anionic Germanate Covalent Organic Framework for High CO ₂ Selectivity and Fast Li Ion Conduction. Chemistry - A European Journal, 2019, 25, 13479-13483.	3.3	29
116	Controlled Synthesis of Polyoxopalladates, and Their Gasâ€Phase Fragmentation Study by Electrospray Ionization Tandem Mass Spectrometry. European Journal of Inorganic Chemistry, 2013, 2013, 3458-3463.	2.0	28
117	Porous nanocomposite derived from Zn, Ni-bimetallic metal-organic framework as an anode material for lithium-ion batteries. Chinese Chemical Letters, 2018, 29, 842-844.	9.0	27
118	Tuning Surface Functionalization and Pore Structure of UiO-66 Metal–Organic Framework Nanoparticles for Organic Pollutant Elimination. ACS Applied Nano Materials, 2021, 4, 5486-5495.	5.0	27
119	3D cross-correlative matrix temperature detection and non-invasive thermal mapping based on a molecular probe. Chemical Science, 2014, 5, 4388-4393.	7.4	25
120	Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. Angewandte Chemie, 2018, 130, 16739-16743.	2.0	25
121	AIBN-Promoted Synthesis of Bibenzo[<i>b</i>][1,4]thiazines by the Condensation of 2,2′-Dithiodianiline with Methyl Aryl Ketones. Organic Letters, 2018, 20, 3332-3336.	4.6	25
122	Macrocyclic Arenesâ€Based Conjugated Macrocycle Polymers for Highly Selective CO ₂ Capture and Iodine Adsorption. Angewandte Chemie, 2021, 133, 9049-9057.	2.0	24
123	Syntheses of Covalent Organic Frameworks via a Oneâ€Pot Suzuki Coupling and Schiff's Base Reaction for C ₂ H ₄ /C ₃ H ₆ Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
124	Promoting the Electrocatalytic Reduction of CO ₂ on Ultrathin Porous Bismuth Nanosheets with Tunable Surface-Active Sites and Local pH Environments. ACS Applied Materials & Interfaces, 2022, 14, 10648-10655.	8.0	23
125	Positronium formation in porous materials for antihydrogen production. Journal of Physics: Conference Series, 2010, 225, 012007.	0.4	22
126	A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte Chemie, 2016, 128, 3480-3484.	2.0	22

#	Article	IF	CITATIONS
127	Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie, 2019, 131, 15889-15893.	2.0	22
128	Versatile Platform of Ion Conducting 2D Anionic Germanate Covalent Organic Frameworks with Potential for Capturing Toxic Acidic Gases. ACS Applied Materials & Interfaces, 2020, 12, 40372-40380.	8.0	22
129	Engineering of catalytically active sites in photoactive metal–organic frameworks. Coordination Chemistry Reviews, 2022, 465, 214561.	18.8	22
130	Efficient and highly-selective cycloaddition of epoxides with carbonyl compound over Wells–Dawson type heteropolyacids. Journal of Molecular Catalysis A, 2005, 236, 72-76.	4.8	20
131	A Tale of Copper Coordination Frameworks: Controlled Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformations and Their Catalytic CH Bond Activation Properties. Chemistry - A European Journal, 2015, 21, 13894-13899.	3.3	20
132	MOF derived composites for cathode protection: coatings of LiCoO ₂ from UiO-66 and MIL-53 as ultra-stable cathodes. Chemical Communications, 2015, 51, 12391-12394.	4.1	20
133	Electropolymerization of Molecularâ€Sieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie, 2019, 131, 8860-8864.	2.0	20
134	Large-Scale Production of MOF-Derived Coatings for Functional Interlayers in High-Performance Li–S Batteries. ACS Applied Energy Materials, 2018, 1, 6986-6991.	5.1	19
135	Defect Engineering in Metal‒Organic Frameworks as Futuristic Options for Purification of Pollutants in an Aqueous Environment. Frontiers in Chemistry, 2021, 9, 673738.	3.6	19
136	Metal–organic frameworks constructed from mixed infinite inorganic units and adenine. CrystEngComm, 2014, 16, 3082.	2.6	18
137	Post-oxidation of a fully conjugated benzotrithiophene-based COF for photocatalytic detoxification of a sulfur mustard simulant. Journal of Materials Chemistry A, 2022, 10, 13325-13332.	10.3	18
138	Metal–Organic Framework-Derived Trimetallic Nanocomposites as Efficient Bifunctional Oxygen Catalysts for Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 33209-33217.	8.0	17
139	Design and synthesis of noble metal–based electrocatalysts using metal–organic frameworks and derivatives. Materials Today Nano, 2022, 17, 100144.	4.6	17
140	Decarboxylationâ€Induced Defects in MOFâ€Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angewandte Chemie, 2021, 133, 21853-21858.	2.0	16
141	Synergistic Effects of Inorganic–Organic Protective Layer for Robust Cycling Dendrite-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 844-850.	8.0	15
142	Tuning the Spin State of the Iron Center by Bridgeâ€Bonded Feâ€Oâ€Ti Ligands for Enhanced Oxygen Reduction. Angewandte Chemie, 2022, 134, .	2.0	15
143	A porous β-cyclodextrin-based terpolymer fluorescence sensor for <i>in situ</i> trinitrophenol detection. RSC Advances, 2019, 9, 8073-8080.	3.6	14
144	Controlled solvothermal synthesis of novel organic functionalized polyoxovanadates. Dalton Transactions, 2012, 41, 6910.	3.3	13

#	Article	IF	CITATIONS
145	The Synthesis of Hexaazatrinaphthyleneâ€Based 2D Conjugated Copper Metalâ€Organic Framework for Highly Selective and Stable Electroreduction of CO ₂ to Methane. Angewandte Chemie, 2021, 133, 16545-16551.	2.0	13
146	Incorporating Fe-O cluster in multivariate (MTV) metal–organic frameworks for promoting visible-light photo-Fenton degradation of micropollutants from water. Chemical Engineering Journal, 2022, 446, 137446.	12.7	13
147	Efficient Synthesis of γâ€Lactones by Cobaltâ€Catalyzed Carbonylative Ring Expansion of Oxetanes under Syngas Atmosphere. ChemCatChem, 2020, 12, 5898-5902.	3.7	12
148	Metalâ€Triazolateâ€Frameworkâ€Derived FeN ₄ Cl ₁ Singleâ€Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 27530-27535.	2.0	12
149	Ruthenium-catalyzed remote C5-sulfonation of <i>N</i> -alkyl-8-aminoquinolines. Organic and Biomolecular Chemistry, 2019, 17, 7564-7568.	2.8	11
150	Ferroceneâ€Linkageâ€Facilitated Charge Separation in Conjugated Microporous Polymers. Angewandte Chemie, 2019, 131, 4265-4270.	2.0	11
151	A Lithium Ion Highway by Surface Coordination Polymerization: In Situ Growth of Metal–Organic Framework Thin Layers on Metal Oxides for Exceptional Rate and Cycling Performance. Chemistry - A European Journal, 2017, 23, 11513-11518.	3.3	10
152	Theoretical prediction of thermal and electronic properties of metal-organic frameworks. Journal of Industrial and Engineering Chemistry, 2019, 80, 136-151.	5.8	10
153	A Hydrolytically Stable Vanadium(IV) Metal–Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. Angewandte Chemie, 2020, 132, 3933-3937.	2.0	10
154	A ZIF-67-derived–sulfur sandwich structure for high performance Li–S batteries. APL Materials, 2019, 7, 091115.	5.1	9
155	A new synthetic approach to functionalize oxomolybdenum complexes. CrystEngComm, 2013, 15, 7410.	2.6	8
156	Synthesis and fine-tuning the pore properties of a thiophene based porous organic framework by post-oxidation treatment. Journal of Materials Chemistry A, 2019, 7, 21953-21958.	10.3	8
157	Design and synthesis of covalent organic frameworks. Chinese Science Bulletin, 2018, 63, 2229-2245.	0.7	7
158	Nanoporous Graphene <i>via</i> a Pressing Organization Calcination Strategy for Highly Efficient Electrocatalytic Hydrogen Peroxide Generation. ACS Applied Materials & Interfaces, 2021, 13, 47478-47487.	8.0	7
159	Controlling Metal Clusters in Breathing Metal–Organic Framework Nanostructures for Boosting Visible-Light-Induced ·OH Radical Formation. ACS Applied Nano Materials, 2022, 5, 2510-2521.	5.0	7
160	Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks. Angewandte Chemie, 2022, 134, .	2.0	7
161	Two chiral multinuclear palladium(ii) complexes comprising alternately arranged isomerous hexanuclear clusters. CrystEngComm, 2013, 15, 6461.	2.6	6
162	Mesoporous Rodâ€Like Metalâ€Organic Framework with Optimal Tumor Targeting Properties for Enhanced Activatable Photodynamic Therapy. Advanced Therapeutics, 2020, 3, 2000011.	3.2	6

#	Article	IF	CITATIONS
163	25 Jahre retikulÃæ Chemie. Angewandte Chemie, 2021, 133, 24142.	2.0	6
164	Strategies in constructing covalent organic framework membranes for molecular sieving. Science China Chemistry, 2022, 65, 836-839.	8.2	5
165	Mass transfer enhancement for rapid, selective extraction of pharmaceuticals by enlarging the microporous on isostructural zeolitic imidazolate Framework-8. Separation and Purification Technology, 2022, 293, 121102.	7.9	5
166	Chiral Dodecanuclear Palladium(II) Thio Cluster: Synthesis, Structure, and Formation Mechanism Explored by ESI-MS and DFT Calculations. Inorganic Chemistry, 2016, 55, 7811-7813.	4.0	4
167	A facile method to prepare energetic materials (EMs). RSC Advances, 2017, 7, 48161-48165.	3.6	4
168	Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving. Angewandte Chemie, 2021, 133, 21474-21479.	2.0	3
169	Enhanced Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Materials by Al2O3 Coating. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	2.1	3
170	Generation of Environmentally Persistent Free Radicals on Metal–Organic Frameworks. Langmuir, 2022, 38, 3265-3275.	3.5	3
171	Hofmannâ€ŧype Metalâ€Organic Framework Based Bimetal/Carbon Nanosheets for Efficient Electrocatalytic Oxygen Evolution. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	2
172	Ultrafine Pt Nanoparticles Supported on Ultrathin Nanobowlâ€shaped Nâ€doped Carbon for Remarkable Oxygen Reduction Reaction. ChemElectroChem, 0, , .	3.4	2
173	Syntheses of Covalent Organic Frameworks via a Oneâ€Pot Suzuki Coupling and Schiff's Base Reaction for C ₂ H ₄ /C ₃ H ₆ Separation. Angewandte Chemie, 2022, 134, .	2.0	2
174	Special Issue of "Metal-Organic Frameworks". Chinese Journal of Chemistry, 2016, 34, 135-135.	4.9	1
175	Molecularâ€Sieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by Inâ€Situ Polymerization. Angewandte Chemie, 2020, 132, 4431-4435.	2.0	1
176	在æ,©å'Œæţä»¶ä,‹å•̂æົ金属有机骨架ä,Žåıઁ€,åí€ææ−™åŠå¶æ€§èƒ½ç"ç©¶. Scientia Sinica Chimi	ca 0.2 014,	44, 1521-15
177	Insights into the luminescent properties of poly(phenylene sulfide)-grafted metal-organic framework (Tb–MOF–PPS) copolymers. High Performance Polymers, 2022, 34, 1028-1036.	1.8	1
178	Innenrücktitelbild: Molecularâ€ s ieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by Inâ€Situ Polymerization (Angew. Chem. 11/2020). Angewandte Chemie, 2020, 132, 4619-4619.	2.0	0
179	Binary Cooperative Complementary Membranes: A Perspective. Advanced Materials Interfaces, 2022, 9, .	3.7	0